Preferred Language
Articles
/
XBYOKocBVTCNdQwCSzvY
Structural Behavior of High Strength Laced Reinforced Concrete One Way Slab Exposed to Fire Flame
...Show More Authors

In this study, an experimental investigation had conducted for six high strength laced reinforced concrete one-way slabs to discover the behavior of laced structural members after being exposed to fire flame (high temperature). Self-compacted concrete (SCC) had used to achieve easy casting and high strength concrete. All the adopted specimens were identical in their compressive strength of ( , geometric layout 2000 750 150 mm and reinforcement specifics except those of lacing steel content, three ratios of laced steel reinforcement of (0.0021, 0.0040 and 0.0060) were adopted. Three specimens were fired with a steady state temperature of  for two hours duration and then after the specimens were cooled suddenly by spraying water. The simply supported slabs were tested for flexure behavior with two line loads applied in the middle third of the slab (four-point bending test). The average residual percentage of cubic compression strength and splitting tensile strength were 57.5% and 50% respectively. The outcomes indicated that the residual bending strength of the burned slabs with laced ratios (0.0021, 0.004, 0.006) were (72.56, 70.54 and 70.82%) respectively. However; an increase in the deflection was gained to be (11.34, 14.67 and 17.22%) respectively with respect to non-burned specimens.

Crossref
View Publication
Publication Date
Tue Apr 07 2009
Journal Name
The 6th Engineering Conference
Bond-Slip Relationship of Reinforcing Steel Bars Embedded in Concrete
...Show More Authors

An experimental investigation based on thirty three simple pullout cylinder specimens was conducted to study the bond-slip trend between concrete and steel reinforcement. Plain and deformed steel reinforcement bars were used in this investigation. The effect of bar diameter, concrete compressive strength and development length on bond-slip relation was detected. The results showed that the bond strength increases with increasing of compressive strength and with decreasing of bar diameter and development length. A nonlinear regression analysis for the experimental results yields in a mathematical correlation to predict the bond strength as a function of concrete compressive strength, reinforcing bar diameter and its yield stress. The minimum

... Show More
Publication Date
Tue Dec 03 2019
Journal Name
Civil Engineering Journal
Moisture Susceptibility of Asphalt Concrete Pavement Modified by Nanoclay Additive
...Show More Authors

Durability of hot mix asphalt (HMA) against moisture damage is mostly related to asphalt-aggregate adhesion. The objective of this work is to find the effect of nanoclay with montmorillonite (MMT) on Marshall properties and moisture susceptibility of asphalt mixture. Two types of asphalt cement, AC(40-50) and AC(60-70) were modified with 2%, 4% and 6% of Iraqi nanoclay with montmorillonite. The Marshall properties, Tensile strength ratio(TSR) and Index of retained strength(ISR) were determined in this work. The total number of specimens was 216 and the optimum asphalt content was 4.91% and 5% for asphalt cement (40-50) and (60-70) respectively. The results showed that the modification of asphalt cement with MMT led to increase Marsh

... Show More
Scopus (18)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Some properties of Reactive Powder Concrete Contain Recycled Glass Powder
...Show More Authors

Every year, millions of tons of waste glass are created across the globe. It is disposed of in landfills, which is unsustainable since it does not disintegrate into the environment. This study aims to produce reactive powder concrete by using recycled glass powder and determine the influence on the mechanical properties. This study investigated the effect of partial replacement of cement with recycled glass powder at two percentages (0, 20) % by weight of cement on some mechanical properties (Fresh density, Splitting tensile strength, Impact Strength, and voids%) of reactive powder concrete containing 1 % micro steel (MSRPC). Furthermore, using steam curing for (5 hours) at 90 degrees celsius after hardening the sample directly, RPC was

... Show More
View Publication
Crossref (8)
Crossref
Publication Date
Sun May 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of Quenching Media Variations on the Mechanical Behavior of Martensitic Stainless Steel
...Show More Authors

The purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Evaluation of Fatigue Behavior of Epoxy Coatings used for Potable Water Storage Tanks
...Show More Authors

In this paper, three types of epoxy-based coatings (Polyamide, pure Polyamine, and Polyamine reinforced by glass-flake) used as a lining for potable water tanks were studied using experimental and finite element methods. Tensile, impact, and fatigue tests were conducted on uncoated and coated AISI 316 stainless steel. The test results show that the applied epoxy based coating improves the mechanical properties, increases of fatigue crack resistance, and enhance the dynamic fracture toughness. The fatigue crack propagation is influenced by the compositions of epoxy coating, and the glass-flake improves the coating resistance to fatigue crack propagation compared to other types.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Frequency Dependence of AC Resistivity and Dielectric Behavior of Lithium-Manganese Soft Ferrites
...Show More Authors

Lithium–Manganese ferrites having the chemical formula (Li0.5-0.5x Mnx Fe2.5-0.5x O4), (0 ≤ x ≤ 1) were prepared by double sintering powder processing. The density of the ferrite increased with Mn content while the porosity was noticed to decrease. The dielectric constant was found to increase at high frequencies more rapidly than the low ones. The dielectric constant found to decrease with Mn content. The decrease in loss factor with frequency agreed with Deby’s type relaxation process. A maximum of dielectric loss factor was observed when the hopping frequency is equal to the external electric field frequency. Manganese substitution reduced the dielectric loss in ferrite. The variation of tanδ with frequency shows a similar na

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Effect of Diameter of Micropile on the Minaret Behavior during Earthquake, Virtual study
...Show More Authors

This study aims to suggest a technique for soil properties improvement of AL- Kadhimin shrine Minaret and to support the foundation, which has a tilt of roughly 80 cm from the vertical axis. The shrine of the AL- Kadhimin is made up of four minarets with two domes set in a large courtyard. The four minarets have skewed to varying degrees due to uncontrolled dewatering inside the shrine in recent years. However, the northeast minaret was the most inclined due to its proximity to the well placed inside shrine courtyard. When the well near the minaret is operated, the water level drops, increasing the effective stresses of the soil and causing differential settling of the minaret foundation. To maintain the minaret's foundation from potenti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2010
Journal Name
Al-khwarizmi Engineering Journal
'Influence of Draft Tube Diameter on Operation Behavior of Air Lift Loop Reactors
...Show More Authors

The ratio of draft tube to reactor diameters is of decisive importance for the operation behavior of air lift loop reactors. The influence of draft tube geometry was investigated with respect to oxygen mass transfer and mixing time. The diameter ratio was varied between 0.33 and 0.80. The measurements were performed in two loop reactors with liquid capacities of 11.775 and 26.49 liters using aqueous with solutions of different coalescence behavior. The results show that there is no single diameter ratio which would produce most favorable conditions for the two process parameters. With respect to the more important requirements of aerobic cultures, i.e high oxygen mass transfer and efficient mixing, a diameter ratio between 0.5 and 0.6 is

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
Viscosity Behavior of Solutions of Some Potassium Salts in Dimethyl Sulphoxide –Water mixture
...Show More Authors

يتضمن البحث دراسة لزوجة محاليل تحتوي على املاح كلوريد البوتاسيوم وبروميد البوتاسيوم في مزيج من الماء وداي مثيل سلفوكسايد 60% وزنا داي مثيل سلفوكسايد.وقد اجريت الدراسة بست درجات حرارية مختلفة ونوقشت امكانية في ضوء معادلة جونز- دول حيث اخذ بنظر الاعتبار الحجم الايوني والشحنة وشكل جزيئات المذاب.

View Publication
Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Effect of TiO2 on the sintering behavior and microstructure of stoichiometric spinel (MgAl2O4)
...Show More Authors

In this work, magnesium aluminate spinel (MA) (MgO 28 wt%, Al2O3 72 wt%) stoichiometric compound , were synthesized via solid state reaction (SSR) Single firing stage, and the impact of sintering on the physical properties and thermal properties as well as the fine structure and morphology of the ceramic product were examined. The Spinel samples were pressed at of (14 MPa) and sintering soaking time (2h). The effect of adding oxide titania (TiO2) was studied. The obtained powders were calcined at a temperature range of 1200 and 1400 °C. The calcined samples spinel were characterized by XRD, it showed the presence of developed spinel phase end also showed that the best catalyst is titania. The SEM image showed the high sintering temperat

... Show More
View Publication Preview PDF
Crossref