In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.
A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreObjective: A descriptive design, using the methodological approach, is carried throughout the present
study from April 1st 2012 to May 20th 2013 to construct the school physical environment standardized
features tool.
Methodology: An instrument of (141) item is constructed for the purpose of the study. A purposive
sample of (44) school; (22) public and (22) private ones is selected. Content Validity of the instrument is
determined through the use of panel of (11) expert who are specialists in Community Health Nursing and
Community Medicine. Internal consistency reliability, using the split-half technique, is employed through
the computation of Cronbach alpha correlation coefficient of (0.93) for internal scale. Data
Nowadays, due to our everyday stress and current stressful lifestyle, the loss of items appears a frequent issue and may be very inconvenient. In this regard, until the IoT becomes part of everyday life, we can use the software as an efficient tool to assist a person's searching, verifying, and finding lost belongings. This paper presents an Android-based application that we proposed and implemented to help users find lost items. Utilizing this software will enable the subscriber to record his request to the relevant authority. In addition, a special section offers to insert a contact telephone number or email to communicate between the person who found the item and the person who lost it. During testing, among other services, the p
... Show MoreThe aim of the research is to:. Preparation and implementation of special educational units using multimedia to learn the skill of scrolling from below. 2 to recognize the impact of the use of multimedia in learning the skill of scrolling from below. 3 to identify the differences between the tests after the two groups research in learning the skill of passing from the bottom volleyball. The research represented the students of the first stage and the sample of the research was drawn randomly and the number of (50) students were divided into two experimental and control groups and each group (25) students were used standardized tests and conducting pre-tests and the implementation of the main exp
... Show More