In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More This study is a try to compare between the traditional Schwarzschild’s radius and the equation of Schwarzschild’s radius including the photon’s wavelength that is suggested by Kanarev for black holes to correct the error in the calculation of the gravitational radius where the wavelengths of the electromagnetic radiation will be in our calculation. By using the different wavelengths; from radio waves to gamma ray for arbitrary black holes (ordinary and supermassive).
Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreAvascular necrosis have always presented great challenges to orthopedic surgeons and patients, remain in many ways today the unsolved dilemma. Varieties of non-vascularized bone grafting techniques preceded by core decompression have been proposed with varying degrees of success. O bb j ee cc t i vv ee ss : The aim of this study is to review the the value of core decompression and non-vascularized tibial bone strip graft treatment for early stages of non-traumatic osteonecrosis stage II & III according to stein burg staging . M ee t hh oo dd ss : prospectively reviewed 26 patients (32 hips) with osteonecrosis of the femoral head between June 2006 and December 2013 at Imam Ali hospital in Sader city & Al-Wasity teaching hosp
... Show MoreThe aim of the research is to identify the cognitive method (rigidity flexibility) of third-stage students in the collage of Physical Education and Sports Sciences at The University of Baghdad, as well as to recognize the impact of using the McCarthy model in learning some of skills in gymnastics, as well as to identify the best groups in learning skills, the experimental curriculum was used to design equal groups with pre test and post test and the research community was identified by third-stage students in academic year (2020-2021), the subject was randomly selected two divisions after which the measure of cognitive method was distributed to the sample, so the subject (32) students were distributed in four groups, and which the pre te
... Show MoreABSTRACT : Alzheimer’s disease (AD) is one of the most common inflammatory neurodegenerative diseases linked with dementia, it is characterized by the deposition of amyloid beta-peptide (Ab) in the brain. The present study aims to innovate a biochemical relationship between AD and interleukin 38 (IL-38) as an anti-inflammatory cytokine, expose novel mechanisms and concepts regarding other biochemical parameters studied previously or recently in AD patients and also examine the biochemical action of memantine (10 mg daily) on AD patients. Sixty (60) diagnosed AD patients participated in the present study and classified into four (4) groups: G3 were composed of (15) newly diagnosed males (52-78) years / without treatment, G4 composed of (15
... Show MoreRetained soft tissue foreign bodies following injuries are frequently seen in the Emergency and Plastic Surgery practice. The patients with such presentations require a watchful and detailed clinical as- sessment to overcome the anticipant possibility of missing them. However, the diagnosis based on the clinical evaluation is usually challenging and needs to be supported by imaging modalities that are suboptimal and may fail in identifying some types of foreign bodies. Owing to that, serious complications such as chronic pain, infection, and delayed wound healing can be faced that necessitate a prompt intervention to halt those detrimental consequences. The classical method of removal is a surgical exploration which is not free of risks.
... Show MoreMolecular barcoding was widely recognized as a powerful tool for the identification of organisms during the past decade; the aim of this study is to use the molecular approach to identify the diatoms by using the environmental DNA. The diatom specimens were taken from Tigris River. The environmental DNA(e DNA) extraction and analysis of sequences using the Next Generation Sequencing (NGS) method showed the highest percentage of epipelic diatom genera including Achnanthidium minutissimum (Kützing) Czarnecki, 1994 (21.1%), Cocconeis placentula Ehrenberg, 1838 (21.3%) and Nitzschia palea (Kützing) W. Smith, 1856 (16.3%).
Five species of diatoms: Achnanthidiu
... Show MoreThe involvement of maxillofacial tissues in SARS‐CoV‐2 infections ranges from mild dysgeusia to life‐threatening tissue necrosis, as seen in SARS‐CoV‐2‐associated mucormycosis. Angiotensin‐converting enzyme 2 (ACE2) which functions as a receptor for SARS‐CoV‐2 was reported in the epithelial surfaces of the oral and nasal cavities; however, a complete understanding of the expression patterns in deep oral and maxillofacial tissues is still lacking.
The immunohistochemical expression of ACE2 was analyzed in 95 specimens from maxillofacial tissues and 10 specimens o
Software Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we eva
... Show More