In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.
Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreThe paper tackles two topics. The first is about the term "Ремейк" which is very common in contemporary Russian literature; it has counterparts such as " Обработка" and " Переделка", where these two may indicate any of the following meanings (remake, reformulate, rewrite, treatment, modification, change). It has been shown that this term does not have a stable definition. Also, the role of this term in literary studies has been mentioned along with how it has come to its peak of use in post-modern literature.
The second is that I have taken a sample of well-known works in Russian literature " On the Eve, On the Eve " by the contemporary Russian writer YevgueniBobov, and shown the effort of the writer
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreBackground: Abdominal symptoms are possibly the most frequent of all symptoms encountered in surgical practice. Pain is the most common of all abdominal symptoms. Causes of acute abdominal pain include both medical and surgical. Most symptoms arise from intra-abdominal organs or systems while some may originate extra abdominally and are then referred to the abdomen. Medical causes of abdominal pain are encountered more frequently.
Objective: To study the causes of acute abdominal pain in patients attending emergency department in Al- Imamain Al- Kadhimain Medical City.
Type of the study: A prospective cross sectional study
Meth
... Show MoreThe current research aims to identify the fear of intimacy and post-traumatic stress disorder among Yazidi women and the correlation between them. To achieve the objectives of the research, the researcher adopted the Descutner, 1991 & (Thelen) scale, which consisted of (35) items. The researcher also adopted the post-traumatic stress disorder scale for (Davidson, 1995) translated by (Abdul Aziz Thabet), which consists of (17) items. These two scales were administered to a sample of (200) individuals. Then, the researcher analyzes the data using the Statistical Package for Social Sciences (SPSS). The results showed that the research sample of Yazidi women has a fear of intimacy. The research sample of Yazidi women is characterized by
... Show Moreيهدف هذا البحث الى التطرق الى صورة العربي كما يعرضها ادب اليافعين العبري في رواية " نادية " للكاتبة العبرية " كاليلا رون فيدر " . والتي تعد من الاديبات العبريات اللواتي تطرقن بصورة مباشرة الى موضوع ما خلف الجدار ، والصراع العربي – الإسرائيلي وانعكاساته على المجتمع الإسرائيلي بصورة عامة والمجتمع العربي بصورة خاصة . ينقسم هذا البحث إلى ثلاثة فصول، تطرق الفصل الأول إلى "ادب اليافعين"، و تاريخه ، مميزاته والفئ
... Show MoreAbstract
Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model
In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe
... Show MoreBackground: Odontogenic tumors are a diverse group of lesions with a variety of clinical behavior and histopathologic subtypes, from hamartomatous and benign to malignant. The study aimed to examine the clinical and pathological features of odontogenic tumors in Baghdad over the last 11 years (2011–2021). Materials and Methods: The present retrospective study analyzed all formalin-fixed, paraffin-embedded tissue blocks of patients diagnosed with an odontogenic tumor that were retrieved from archives at a teaching hospital/College of Dentistry in Baghdad University, Iraq, between 2011 and 2021. The diagnosis of each case was confirmed by examining the hematoxylin and eosin stained sections by two expert pathologists. Data from pati
... Show More