In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
The research focuses on determination of best location of high elevated tank using the required head of pump as a measure for this purpose. Five types of network were used to find the effect of the variation in the discharge and the node elevation on the best location. The most weakness point was determined for each network. Preliminary tank locations were chosen for test along the primary pipe with same interval distance. For each location, the water elevation in tank and pump head was calculated at each hour depending on the pump head that required to achieve the minimum pressure at the most weakness point. Then, the sum of pump heads through the day was determined. The results proved that there is a most economical lo
... Show MoreThe aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN
In this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F
... Show MoreThe study aims to identify the Traumatic Symptoms (physiological, emotional, and cognitive) of earthquakes among the targeted sample; it also aims to identify the significant differences between psychological, emotional, and cognitive traumatic symptoms of earthquakes according to the gender and age of participants. The study additionally seeks to identify thepsychological positive-negative reactions associated with earthquakes according to gender and age of the participants. To measure the traumatic symptoms of earthquakes, a 4-point Likert scale questionnaire with (20) items (questions) accompanied with a 4-point Likert scale questionnaire with (18) items (questions) were used to measure the Psychological positive-n
... Show MoreThe research summarizes the knowledge of the dimensions and denotations of T.V advertisement; and its constituents for building it through the semiotic approach of an ad sample represented by the announcement of Zain Kuwait Telecom Company which carries the title "Mr. President" using Roland Barth's approach, starting with the designation, implicit, and linguistic reading to reach the narrative features and their denotations. That makes television advertising as a semiotic and pragmatic discourse in view of the still and motion picture with its efficiency and strength to inform and communicate. And what lies in it of aesthetic, artistic elements; informational and effective power in influencing the recipients by focusing on narratives and a
... Show MoreConsistent "with the thought of tax talk is unified tax natural evolution for him, as the application leads to the inclusion of tax all branches of income and its sources and through truncated part of this entry through the application of price ascending it, it means the procedures of tax reform. Taxes on total income characterized by giving a clear picture of the total income of the taxpayer and its financial situation and its burden family which allows granting exemptions, downloads, and application of prices that fit this case. This requires reconsideration of the structure of the tax system in force and the transition from a system specific taxes to the tax system on the total income of the integration of income from the rental of re
... Show More