In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.
The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola
... Show MoreThe finite element approach is used to solve a variety of difficulties, including well bore stability, fluid flow production and injection wells, mechanical issues and others. Geomechanics is a term that includes a number of important aspects in the petroleum industry, such as studying the changes that can be occur in oil reservoirs and geological structures, and providing a picture of oil well stability during drilling. The current review study concerned about the advancements in the application of the finite element method (FEM) in the geomechanical field over a course of century.
Firstly, the study presented the early advancements of this method by development the structural framework of stress, make numerical computer solution
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreThe paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreThe research aimed at designing a teaching aid for learning backswing into handstand as well as identifying its effect on learning skill performance. The researchers hypothesized statistical differences between pre and post-tests in favor of the research group. They used the experimental method on six (13 – 16) year–old Baghdad club gymnasts. The researchers used the one group design in which all players perform pretests followed by special tests on the teaching aid than are tested posttests. The researchers conclude that the teaching aid positively affected learning the skill as well as the teaching aid was very good and endured the performance of all gymnasts. The researcher recommended making simi
... Show MoreData generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st
... Show MoreSome degree of noise is always present in any electronic device that
transmits or receives a signal . For televisions, this signal i has been to s the
broadcast data transmitted over cable-or received at the antenna; for digital
cameras, the signal is the light which hits the camera sensor. At any case, noise
is unavoidable. In this paper, an electronic noise has been generate on
TV-satellite images by using variable resistors connected to the transmitting cable
. The contrast of edges has been determined. This method has been applied by
capturing images from TV-satellite images (Al-arabiya channel) channel with
different resistors. The results show that when increasing resistance always
produced higher noise f