Preferred Language
Articles
/
WxfV0IwBVTCNdQwC9wgF
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Feb 01 2019
Journal Name
Environmental Technology & Innovation
The use of Artificial Neural Network (ANN) for modeling of Cu (II) ion removal from aqueous solution by flotation and sorptive flotation process
...Show More Authors

View Publication
Scopus (31)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Networks And Systems
Using Machine Learning to Control Congestion in SDN: A Review
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Brain Research Bulletin
A note on the probability distribution function of the surface electromyogram signal
...Show More Authors

View Publication
Scopus (81)
Crossref (85)
Scopus Clarivate Crossref
Publication Date
Fri Dec 30 2011
Journal Name
Al-kindy College Medical Journal
Primaryb realignment of Traumatic posterior urethral rupture.
...Show More Authors

Background: Posterior urethral rupture remains
one of the most difficult and controversial injuries
to treat and its management still controversial.
Aim: To assess the effect of primary
realignment of posterior urethral rupture.
Methods: in this study, 20 patients (mean age
24.7 years, range 12 to 39 years) were admitted to
al-kindey teaching hospital, Baghdad, Iraq, with
complete posterior urethral rupture associated with
fractured pelvis following trauma (3 cases of fall
from high, 17 cases of road traffic accidents). All
the patients were operated upon at the day of
accident to establish the alignment of the posterior
urethra on a Foley's catheter with bladder drainage
by suprapubic catheter.

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 31 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
Classification and monitoring of autism using svm and vmcm
...Show More Authors

Autism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this

... Show More
Preview PDF
Scopus (3)
Scopus
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Clouds Height Classification Using Texture Analysis of Meteosat Images
...Show More Authors

In the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Genetic--Based Face Retrieval Using Statistical Features
...Show More Authors

Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
View Publication Preview PDF
Scopus (7)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2018
Journal Name
King's College London
A novel sol-gel silica formulation for management of methadone hydrochloride abuse
...Show More Authors

Introduction: Methadone hydrochloride (MDN) is an effective pharmacological substitution treatment for opioids dependence, adopted in different countries as methadone maintenance treatment (MMT) programmes. However, MDN can exacerbate the addiction problem if it is abused and injected intravenously, and the frequent visits to the MMT centres can reduce patient compliance. The overall aim of this study is to develop a novel extended-release capsule of MDN using the sol-gel silica (SGS) technique that has the potential to counteract medication-tampering techniques and associated health risks and reduce the frequent visits to MMT centres. Methods: For MDN recrystallisation, a closed container method (CCM) and hot-stage method (HSM) were conduc

... Show More
Preview PDF
Publication Date
Sat Nov 24 2018
Journal Name
Open Access Macedonian Journal Of Medical Sciences
Outcomes of Operative Management of 96 Cases with Traumatic Retroperitoneal Hematoma: A Single-Institution Experience
...Show More Authors

AIM: To analyse our experiences in the management of traumatic retroperitoneal hematoma (RPH), highlighting the various challenges faced and to report on the outcome of these patients. METHODS: From May 2014 to May 2017, all patients with traumatic RPH who underwent surgical treatment were retrospectively analysed. The kind of injury, intraoperative findings, sites of hematoma, postoperative morbidity and the overall outcomes were recorded. RESULTS: Ninety-six patients; 53 with blunt trauma and 43 with penetrating injury, were included in this study. The centre-medial hematoma was observed in 24 (25%) patients, lateral hematoma in 46 (47.9%) patients, pelvic hematoma in 19 (19.8%) patients, and multiple zone hematomas in

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Crossref