In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.
The need to exchange large amounts of real-time data is constantly increasing in wireless communication. While traditional radio transceivers are not cost-effective and their components should be integrated, software-defined radio (SDR) ones have opened up a new class of wireless technologies with high security. This study aims to design an SDR transceiver was built using one type of modulation, which is 16 QAM, and adding a security subsystem using one type of chaos map, which is a logistic map, because it is a very simple nonlinear dynamical equations that generate a random key and EXCLUSIVE OR with the originally transmitted data to protect data through the transmission. At th
... Show MoreThis research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV
... Show MorePorous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a
... Show MoreThis article aims to provide a bibliometric analysis of intellectual capital research published in the Scopus database from 1956 to 2020 to trace the development of scientific activities that can pave the way for future studies by shedding light on the gaps in the field. The analysis focuses on 638 intellectual capital-related papers published in the Scopus database over 60 years, drawing upon a bibliometric analysis using VOSviewer. This paper highlights the mainstream of the current research in the intellectual capital field, based on the Scopus database, by presenting a detailed bibliometric analysis of the trend and development of intellectual capital research in the past six decades, including journals, authors, countries, inst
... Show MoreToday, the prediction system and survival rate became an important request. A previous paper constructed a scoring system to predict breast cancer mortality at 5 to 10 years by using age, personal history of breast cancer, grade, TNM stage and multicentricity as prognostic factors in Spain population. This paper highlights the improvement of survival prediction by using fuzzy logic, through upgrading the scoring system to make it more accurate and efficient in cases of unknown factors, age groups, and in the way of how to calculate the final score. By using Matlab as a simulator, the result shows a wide variation in the possibility of values for calculating the risk percentage instead of only 16. Additionally, the accuracy will be calculate
... Show MoreIn this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N
... Show More