Preferred Language
Articles
/
WxfTfI4BVTCNdQwCyEq4
RELATIONSHIP OF ESSENTIALLY SEMISMALL QUASI-DEDEKIND MODULES WITH SCALAR AND MULTIPLICATION MODULES

Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that if E is scalar semismall quasi-prime R-Module. Then E is an ESSQD R-Module, we show that if E is faithful multiplication R-Module, thus E is an essentially semismall prime R-Module iff R is an ESSQD ring

Crossref
View Publication
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
On Primary Multipliction Modules

Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.

Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Early Childhood Special Education (int-jecse)
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
J-semi regular modules
Abstract<p>Let <italic>R</italic> be a ring with identity and let <italic>M</italic> be a left R-module. <italic>M</italic> is called J-semiregular module if every cyclic submodule of <italic>M</italic> is J-lying over a projective summand of <italic>M</italic>, The aim of this paper is to introduce properties of J-semiregular module Especially, we give characterizations of J-semiregular module. On the other hand, the notion of J-semi hollow modules is studied as a generalization of semi hollow modules, finally <italic>F</italic>-J-semiregular modules is studied as a generalization of <italic>F</italic>-semiregular modules.</p> ... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
On J–Lifting Modules
Abstract<p>Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that <inline-formula> <tex-math><?CDATA ${\rm{M}} = {\rm{K}} \oplus \mathop {\rm{K}}\limits^\prime,\>\mathop {\rm{K}}\limits^\prime \subseteq {\rm{M}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="normal">M</mi> <mo>=</mo> <mi mathvariant="normal">K</mi></mrow></math></inline-formula></p> ... Show More
Scopus (4)
Scopus Crossref
View Publication
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
On Small Primary Modules

Let  be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule  of  is  primary if for each with en either or  and an -module  is a small primary if   =  for each proper submodule  small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).  

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
On ”-lifting Modules

Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that AD and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
S-K-nonsingular Modules

In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
On Purely –Extending Modules

In this note we consider a generalization of the notion of a purely extending
modules, defined using y– closed submodules.
We show that a ring R is purely y – extending if and only if every cyclic nonsingular
R – module is flat. In particular every nonsingular purely y extending ring is
principal flat.

View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
F-Approximately Regular Modules

We introduce in this paper the concept of an approximately pure submodule as a     generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module  is approximately pure, then  is called F-approximately regular. Further, many results about this concept are given.

Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Purely co-Hopfian Modules

  Let R be an associative ring with identity and M a non – zero unitary R-module.In this paper we introduce the definition of purely co-Hopfian module, where an R-module M is said to be purely co-Hopfian if for any monomorphism f Ë› End (M), Imf is pure in M and we give  some properties of this kind of modules.

View Publication Preview PDF