This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conclude that (hGA) can give good estimators (phi(1),theta(1)) of ARMA(1,1)parameters and more reliable than estimators obtained by cGA and SDA algorithm
Background: Dyslipidemia is defined as an abnormally high level of various lipids in the blood. It is considered a major risk for atherosclerosis and coronary artery disease. Genetic susceptibility can have a significant influence on the development and progression of dyslipidemia. ApoB-100 R3500Q mutation and ApoE variants are among those genetic risks for dyslipidemia. This study aims to assess the possible contribution of ApoB and ApoE variants on lipid profile among a group of early-onset ischemic heart disease (IHD) patients in comparison to a group of controls. Methods: Forty patients with dyslipidemia and early-onset IHD without chronic conditions likely to cause derangement of lipid levels were recruited to this case-control study
... Show MoreGenetic variation was studied in 22 local and imported samples collected from local Iraqi market by using Single sequence repeat (SSR-PCR). Six primers set were used in this study. These primers produced 33 bands. Molecular weights of these bands ranged between 100 bp to 1500 bp. The number of polymorphic bands is 24, whereas the number of monomorphic bands is 9. The results of Dendrogram of the studied samples depended on SSR-PCR results by using Jaccard coefficient for genetic similarity was distributed the samples into 10 groups. This Dendrogram revealed a higher similarity between Iraqi/Balad green bell pepper and Iraqi/Yousifia green bell pepper with 1 value. This value is the highest between samples in comparison with lowest values (0
... Show MoreHot-wire cutting is one of the important, non-traditional thermomechanical way to cut polymer, usually expanded foam and extruded foam, in low volume manufacturing. The study and analysis of Hot-Wire cutting parameters play an important role to enhance the quality and accuracy of the process and products. The effects on the surface have been investigated by using experimental tests designed according to the Taguchi orthogonal array (OA). In this study, four parameters with five levels for each parameter have been used: [temperature of wire (A) (100, 120, 130, 150, 160) °C], [diameter of wire (B) (0.3,0.4,0.5,0.7,0.8) mm], [velocity of cutting (C) (200, 300,400,500,600) mm/min], [and density of foam (D) (0.01,0.0
... Show MoreThe rheological behavior among factors that are present in Stokes law can be used to control the stability of the colloidal dispersion system. The felodipine lipid polymer hybrid nanocarriers (LPHNs) is an interesting colloidal dispersion system that is used for rheological characteristic analysis. The LPHNs compose of polymeric components and lipids. This research aims to prepare oral felodipine LPHNs to investigate the effect of independent variables on the rheological behavior of the nanosystem. The microwave-based technique was used to prepare felodipine LPHNs (H1-H9) successfully. All the formulations enter the characterization process for particle size and PDI to ascertain the colloidal properties of the prepared nanosystem t
... Show MoreIn this work the fabrication and characterization of poly(3-hexylthiophene) P3HT-metallic nanoparticles (Ag, Al). Pulsed Laser Ablation (PLA) technique was used to synthesis the nanoparticles in liquid. The Fourier Transformer Infrared (FTIR) for all samples indicate the chemical interaction between the polymer and the nanoparticles. Scanning Electron Microscopic (SEM) analysis showed the particle size for P3HT-AgNps samples between 44.50 nanometers as well the spherical structure. While for P3HT-AlNps samples was flakes shape. Energy Dispersive X-ray (EDX) spectra show the existing of amount of metallic nanoparticles.
Due to their attractive properties, silver nanowires (Ag-NWs) are newly used as nanoelectrodes in continuous wave (CW) THz photomixer. However, since these nanowires have small contact area, the nanowires fill factor in the photomixer active region is low, which leads to reduce the nanowires conductivity. In this work, we proposed to add graphene nanoantenna array as nanoelectrodes to the silver nanowires-based photomixer to improve the conductivity. In addition, the graphene nanoantenna array and the silver nanowires form new hybrid nanoelectrodes for the CW-THz photomixer leading to improve the device conversion efficiency by the plasmonic effect. Two types of graphene nanoantenna array are proposed in two separate photomixer conf
... Show MoreEight different Dichloro(bis{2-[1-(4-R-phenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})iron(II) compounds, 2–9, have been synthesised and characterised, where group R=CH3 (L2), OCH3 (L3), COOH (L4), F (L5), Cl (L6), CN (L7), H (L8) and CF3 (L9). The single crystal X-ray structure was determined for the L3 which was complemented with Density Functional Theory calculations for all complexes. The structure exhibits a distorted octahedral geometry, with the two triazole ligands coordinated to the iron centre positioned in the equatorial plane and the two chloro atoms in the axial positions. The values of the FeII/III redox couple, observed at ca. −0.3 V versus Fc/ Fc+ for complexes 2–9, varied over a very small potential range of 0.05 V.
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show More