Preferred Language
Articles
/
WxfGNY8BVTCNdQwCNmLJ
Hybrid canonical genetic algorithm and steepest descent algorithm for optimizing likelihood estimators of ARMA (1, 1) model
...Show More Authors

This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conclude that (hGA) can give good estimators (phi(1),theta(1)) of ARMA(1,1)parameters and more reliable than estimators obtained by cGA and SDA algorithm

Scopus Crossref
View Publication
Publication Date
Fri Sep 24 2021
Journal Name
Proceedings Of Sixth International Congress On Information And Communication Technology
Minimizing Costs of Transportation Problems Using the Genetic Algorithm
...Show More Authors

View Publication
Scopus (13)
Crossref (10)
Scopus Crossref
Publication Date
Tue Oct 16 2018
Journal Name
Springer Science And Business Media Llc
MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
...Show More Authors

Scopus (63)
Crossref (46)
Scopus Clarivate Crossref
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Notes on estimation of ARMA model (1.1) And ARMA (0,1)
...Show More Authors

By driven the moment estimator of ARMA (1, 1) and by using the simulation some important notice are founded, From the more notice conclusions that the relation between the sign   and moment estimator for ARMA (1, 1) model that is: when the sign is positive means the root      gives invertible model and when the sign is negative means the root      gives invertible model. An alternative method has been suggested for ARMA (0, 1) model can be suitable when

View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Nurse Scheduling Problem Using Hybrid Simulated Annealing Algorithm
...Show More Authors

Nurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Speech Enhancement Algorithm Based on a Hybrid Estimator
...Show More Authors
Abstract<p>Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra</p> ... Show More
View Publication
Crossref (11)
Crossref
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Estimate The Survival Function By Using The Genetic Algorithm
...Show More Authors

  Survival analysis is the analysis of data that are in the form of times from the origin of time until the occurrence of the end event, and in medical research, the origin of time is the date of registration of the individual or the patient in a study such as clinical trials to compare two types of medicine or more if the endpoint It is the death of the patient or the disappearance of the individual. The data resulting from this process is called survival times. But if the end is not death, the resulting data is called time data until the event. That is, survival analysis is one of the statistical steps and procedures for analyzing data when the adopted variable is time to event and time. It could be d

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of The College Of Basic Education
Solving Job-Shop Scheduling Problem Using Genetic Algorithm Approach
...Show More Authors

Publication Date
Wed Apr 10 2019
Journal Name
Engineering, Technology &amp; Applied Science Research
Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm
...Show More Authors

Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.

... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Webology
Red Monkey Optimization and Genetic Algorithm to Solving Berth Allocation Problems
...Show More Authors

In the past two decades, maritime transport traffic has increased, especially in the case of container flow. The BAP (Berth Allocation Problem) (BAP) is a main problem to optimize the port terminals. The current manuscript explains the DBAP problems in a typical arrangement that varies from the conventional separate design station, where each berth can simultaneously accommodate several ships when their entire length is less or equal to length. Be a pier, serve. This problem was then solved by crossing the Red Colobuses Monkey Optimization (RCM) with the Genetic Algorithm (GA). In conclusion, the comparison and the computational experiments are approached to demonstrate the effectiveness of the proposed method contrasted with other

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Flexible Genetic Algorithm Based Optimal Power Flow of Power Systems
...Show More Authors

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real outp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref