This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conclude that (hGA) can give good estimators (phi(1),theta(1)) of ARMA(1,1)parameters and more reliable than estimators obtained by cGA and SDA algorithm
This paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them in terms of accuracy.
This paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
Abstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controll
... Show MoreSimulation Study
Abstract :
Robust statistics Known as, Resistance to mistakes resulting of the deviation of Check hypotheses of statistical properties ( Adjacent Unbiased , The Efficiency of data taken from a wide range of probability distributions follow a normal distribution or a mixture of other distributions with different standard deviations.
power spectrum function lead to, President role in the analysis of Stationary random processes, organized according to time, may be discrete random variables or continuous. Measuring its total capacity as frequency function.
Estimation methods Share with
... Show MoreScience, technology and many other fields are use clustering algorithm widely for many applications, this paper presents a new hybrid algorithm called KDBSCAN that work on improving k-mean algorithm and solve two of its
problems, the first problem is number of cluster, when it`s must be entered by user, this problem solved by using DBSCAN algorithm for estimating number of cluster, and the second problem is randomly initial centroid problem that has been dealt with by choosing the centroid in steady method and removing randomly choosing for a better results, this work used DUC 2002 dataset to obtain the results of KDBSCAN algorithm, it`s work in many application fields such as electronics libraries,
Steganography is an important class of security which is widely used in computer and network security nowadays. In this research, a new proposed algorithm was introduced with a new concept of dealing with steganography as an algorithmic secret key technique similar to stream cipher cryptographic system. The proposed algorithm is a secret key system suggested to be used in communications for messages transmission steganography
In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i