The shortage in surface water quantities led to a shift in dependence on the groundwater as an alternative water source in southern parts of Iraq. The groundwater is decreasing in quantity and water quality is degrading due to different factors. Therefore, it is important to assess the groundwater quality of the Missan Governorate of the country by analyzing the physicochemical parameters and distinguishing the probable sources of contaminants in the area. The present study used water quality diagrams and statistical methods such as factor analysis and agglomerative cluster analysis to determine the sources of chemical ions in the forty-four groundwater samples collected from wells in the study area. In addition, the Water Quality Index (WQI) was calculated to evaluate the groundwater quality by combining the parameters into a single index. The WQI results varied from − 66.27 to 1064.13 indicating that the groundwater is unsuitable for drinking at various places and good in quality at most of the wells of the area. The main factors that contribute to the differences in the groundwater quality include the variation in geological materials, influence of climate such as the high rate of evaporation, and anthropogenic factors such as industrial activities in central areas such as oil production in the Bazergan oil field. The most affected wells by the petroleum industry that were clustering in cluster R1which show high levels in most water chemistries. The results have implications for the management of the groundwater resources, which are expected to be under more risk of contamination in near future.
Genetic polymorphisms of genes whose products are responsible for activities, such as xenobiotic metabolism, mutagen detoxification and DNA-repair, have been predicted to be associated with the risk of developing lung cancer (LC). The association of LC with tobacco smoking has been extensively investigated, but no studies have focused on the Arab ethnic- ity. Previously, we examined the association between genetic polymorphisms among Phase I and Phase II metabolism genes and the risk of LC. Here, we extend the data by examining the correlation of OGG1 Ser326Cys combined with CYP1A1 (Ile462Val and MspI) and GSTP1 (Ile105Val and Ala103Val) polymorphisms with the risk of LC. Polymerase chain reaction- restriction fragment length polymorphism (
... Show MoreThe acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show MoreFor the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe e
In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
This study included synthesizing silver nanoparticles (AgNPs) in a green method using AgNO3 solution with glucose exposed to microwave radiation. The prepared NPs were also characterized using ultraviolet and visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). The UV/vis spectroscopy confirmed the production of AgNPs, while SEM analysis showed that the typical spherical AgNPs were 30 nm and 50 nm in size for the NPs prepared using black tea (B) and green tea (G) as reducing agent, respectively. The changes in some of the biochemical parameters related to the liver and kidneys have been analyzed to evaluate the probable toxic effects of AgNPs. 40 adult male mice were included in this study. To assess the probable he
... Show More