Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such as decision tree and nearest neighbor search. The proposed method can handle streaming data efficiently and, for entropy discretization, provide su the optimal split value.
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreThe data presented in this paper are related to the research article entitled “Novel dichloro(bis{2-[1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal(II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)” (Conradie et al., 2018) [1]. This paper presents characterization and structural data of the 2-(1-(4-methyl-phenyl)-1H-1,2,3-triazol-1-yl)pyridine ligand (L2 ) (Tawfiq et al., 2014) [2] as well as seven dichloro(bis{2- [1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal (II) coordination compounds, [M(L2 )2Cl2], all containing the same ligand but coordinated to different metal ions. The data illustrate the shift in IR, UV/VIS, and NMR (for diamagnetic complexes) peaks wh
... Show MoreAbstract
A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.
Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.
The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap
... Show MoreGravity and magnetic data are used to study the tectonic situation of Al-Kut- Al-
Hai and surrounding areas in central Iraq. The study included application of many
processing and interpretation programs. The window method with different spacing
was used to separate the residual from regional anomalies for gravity and magnetic
data. The Total Horizontal Derivative (THDR) techniques used to identify the fault
trends in the basement and sedimentary cover rocks depending upon gravity and
magnetic data. The identified faults in the study area show (NW-SE), (NE-SW) (NS)
and (E-W) trends. It is believed that these faults extending from the basement to
the upper most layer of the sedimentary cover rocks.
Algae have been used in different applications in various fields such as the pharmaceutical industry, environmental treatments, and biotechnology. Studies show that the preparation of nanoparticles by a green synthesis method is a promising solution to many medical and environmental issues. In the current study, the green alga Stigeoclonium attenuatum (Hazen) F.S. Collins 1909 was isolated and identified from the Al-Hillah River (Governorate of Babylon) in the middle of Iraq. The green synthesis by the aqueous extract of algae was used to prepare the nanoflakes of ZnO. Nanoflakes of ZnO are characterized by X-Ray diffraction (XRD) and scanning electron microscope (SEM) with flakes shape and dimensions ranging be
... Show MoreReliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co
In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
Today, the role of cloud computing in our day-to-day lives is very prominent. The cloud computing paradigm makes it possible to provide demand-based resources. Cloud computing has changed the way that organizations manage resources due to their robustness, low cost, and pervasive nature. Data security is usually realized using different methods such as encryption. However, the privacy of data is another important challenge that should be considered when transporting, storing, and analyzing data in the public cloud. In this paper, a new method is proposed to track malicious users who use their private key to decrypt data in a system, share it with others and cause system information leakage. Security policies are also considered to be int
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show More