Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such as decision tree and nearest neighbor search. The proposed method can handle streaming data efficiently and, for entropy discretization, provide su the optimal split value.
In this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreNumeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a
... Show MoreWith the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev
... Show MoreThis article aims to provide a bibliometric analysis of intellectual capital research published in the Scopus database from 1956 to 2020 to trace the development of scientific activities that can pave the way for future studies by shedding light on the gaps in the field. The analysis focuses on 638 intellectual capital-related papers published in the Scopus database over 60 years, drawing upon a bibliometric analysis using VOSviewer. This paper highlights the mainstream of the current research in the intellectual capital field, based on the Scopus database, by presenting a detailed bibliometric analysis of the trend and development of intellectual capital research in the past six decades, including journals, authors, countries, inst
... Show MoreIn this research, the performance of a two kind of membrane was examined to recovering the nutrients (protein and lactose) from the whey produced by the soft cheese industry in the General Company for Food Products inAbo-ghraab.Wheyare treated in two stages, the first including press whey into micron filter made of poly vinylidene difluoride (PVDF) standard plate type 800 kilo dalton, The membrane separates the whey to permeate which represent is the main nutrients and to remove the fat and microorganisms.The second stage is to isolate the protein by using ultra filter made of polyethylsulphone(PES)type plate with a measurement of 10,60 kilo dalton and the recovery of lactose in the form of permeate.
The results showed that the percen
CD-nanosponges were prepared by crosslinking B-CD with diphenylcarbonate (DPC) using ultrasound assisted technique. 5-FU was incorporated with NS by freeze drying, and the phase solubility study, complexation efficiency (CE) entrapment efficiency were performed. Also, the particle morphology was studied using SEM and AFM. The in-vitro release of 5-FU from the prepared nanosponges was carried out in 0.1N HCl.
5-FU nanosponges particle size was in the nano size. The optimum formula showed a particle size of (405.46±30) nm, with a polydispersity index (PDI) (0.328±0.002) and a negative zeta potential (-18.75±1.8). Also the drug entrapment efficiency varied with the CD: DPC molar ratio from 15.6 % to 30%. The SEM an
... Show MoreNGC 6946 have been observed with BVRI filters, on October 15-18,
2012, with the Newtonian focus of the 1.88m telescope, Kottamia
observatory, of the National Research Institute of Astronomy and
Geophysics, Egypt (NRIAG), then we combine the BVRI filters to
obtain an astronomical image to the spiral galaxy NGC 6946 which
is regarded main source of information to discover the components of
this galaxy, where galaxies are considered the essential element of
the universe. To know the components of NGC 6946, we studied it
with the Variable Precision Rough Sets technique to determine the
contribution of the Bulge, disk, and arms of NGC 6946 according to
different color in the image. From image we can determined th