The aim of this study was to Identifying The Effect of using Linear programming and Branching programming by computer in Learning and Retention of movement concatenation(Linkwork) in parallel bars in Artistic Gymnastics. The searchers have used the experimental method. The search subject of this article has been taken (30) male - students in the second class from the College of Physical Education/University of Baghdad divided into three groups; the first group applied linear programming by computer, and the second group has been applicated branching programming by computer, while precision group used traditional method in the college. The researchers concluded the results by using the statistical bag for social sciences (spss) such as both kinds of programming learning have procured improvement in learning and retention of movement concatenation(Linkwork) in parallel bars in Artistic Gymnastics, but Branching programming by computer is more activity than linear programming. The researchers have recommended applying branching programming learning as a type of auto–learning in the teaching of concatenation (Linkwork) in Parallel bars in the research.
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreIt is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreThe research aims to identify the effect of jigsaw strategy in learning achievement and engaging for the third grade intermediate students in chemistry. The research sample consisted of (61) students distributed in two experimental and control groups. The research tools consisted in the achievement test and the measure of engaging learning. The results showed that there are statistically significant differences at the level of (α = 0.05) between the experimental group and the control group in both the achievement test and the measure of learning involvement for the benefit of the experimental group. In this light, the researcher recommended the use of jigsaw strategy for teaching the subject matter. Lamia because of its impact in raising
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreComputer modeling has been used to investing the Coulomb coupling parameter ?. The effects of the structure parameter K, grain charge Z, plasma density N, temperature dust grain Td, on the Coulomb coupling parameter had been studied. It was seen that the ? was increasing with increasing Z and N, and decrease with increasing K and T. Also the critical value of ? that the phase transfer of the plasma state from liquid to solid was studied.
research aim :
- The research aimed to investigate the effect of two treatment
methods in the gaining of fourth grade students in geography
object.
- Research hypothesis
there are no statistically significant differences at the level of ( 0.05 )
in the average level of achievement in geography between the first
experimental group ( strengthening lessons ) and the second group
( re- teaching )
no individual differences statically significant at the level of ( 0.05 )
in the average level achievement in geography object of the second
experimental group ( re- teaching ) and the first experimental group
( strengthening lesson )
the research sample : the researcher selected randomly Baghdad
Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreTwo simple methods spectrophotometric were suggested for the determination of Cefixime (CFX) in pure form and pharmaceutical preparation. The first method is based without cloud point (CPE) on diazotization of the Cefixime drug by sodium nitrite at 5Cº followed by coupling with ortho nitro phenol in basic medium to form orange colour. The product was stabilized and measured 400 nm. Beer’s law was obeyed in the concentration range of (10-160) μg∙mL-1 Sandell’s sensitivity was 0.0888μg∙cm-1, the detection limit was 0.07896μg∙mL-1, and the limit of Quantitation was 0.085389μg∙mL-1.The second method was cloud point extraction (CPE) with using Trtion X-114 as surfactant. Beer
... Show More