In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier as in Variational Iteration Method (VIM) and no needs to construct a homotopy as in Homotopy Perturbation Method (HPM). The results obtained are compared with the results by existing methods and prove that the presented method is very effective, simple and does not require any restrictive assumptions for nonlinear terms. The software used for the numerical calculations in this study was MATHEMATICA r 8.0.
A modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify t
... Show MoreEvery researcher must say that the world in continually progress toward the best and that
the Arab and Islamic civilization had produced much of systems and virtuous educational
practices which raised from Islamic heritage. This nation was not isolated from external
world, but it was made a clear active for promote the banner of other nations which entered
under her influence to promote Islamic banner and Muslims. Consequently also Muslims are
affected and influenced, this resulted a clear impact in the civilization and educational
ideology especially in the contemporary teaching methods.
The present study aimed at identifying the effectiveness of Macaton method in improving some sensory and cognitive skills in autistic children. In order to achieve the aims of the study, the researcher used the experimental method. The present study sample was (10) children whose ages ranged between (7-10) years and were diagnosed medically with autism disorder. The researcher randomly selected the sample and divided it into two groups: the first group consisted of (5) children representing the experimental group, and (5) children representing the control group after extracting the equivalence between the two groups in terms of age, intelligence, economic and social level and the degree of communication. The program was implemented for t
... Show MoreLanguage Teaching & Leaning Problems at the Iraqi university level: Image & Reality
The aim of this study is to provide an overview of various models to study drug diffusion for a sustained period into and within the human body. Emphasized the mathematical compartment models using fractional derivative (Caputo model) approach to investigate the change in sustained drug concentration in different compartments of the human body system through the oral route or the intravenous route. Law of mass action, first-order kinetics, and Fick's perfusion principle were used to develop mathematical compartment models representing sustained drug diffusion throughout the human body. To adequately predict the sustained drug diffusion into various compartments of the human body, consider fractional derivative (Caputo model) to investiga
... Show MoreThe research tackles an important subject, namely, the light text and how it works well in the Arab television programs. The methodological framework of the research presents the research problem stated in the following question: How can the text be used and what is its impact in the Arab TV programs? The importance of this research is that it deals with the subject of light text and its impact on Arab television programs.
This study is useful to the workers and scholars in the field of lighting as well as the goal of the research in (studying of the employment of light text in Arab television programs).
The limits of research were manifested in the study of the light text and how to make use of it
... Show More