In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier as in Variational Iteration Method (VIM) and no needs to construct a homotopy as in Homotopy Perturbation Method (HPM). The results obtained are compared with the results by existing methods and prove that the presented method is very effective, simple and does not require any restrictive assumptions for nonlinear terms. The software used for the numerical calculations in this study was MATHEMATICA r 8.0.
This study examined the problematic of the ambiguous relationship between the media and terrorism and the problems that result from press coverage of terroristic incidents. The paper sought to show the classification and confrontation of such incidents had been established from the point of view of a sample of media professionals, researchers and writers who are frequenters of Al-Mutanabi Street in Baghdad. The media outlets that carry this coverage would not give up their media mission as well as the terrorists would not be given an opportunity to take advantage of this coverage in achieving their goals and objectives. Furthermore, the terrorist organizations would have no chance to exploit these means to deliver their terroristic messa
... Show MoreThis paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving
... Show MoreAbstract
This research aims to design a multi-objective mathematical model to assess the project quality based on three criteria: time, cost and performance. This model has been applied in one of the major projects formations of the Saad Public Company which enables to completion the project on time at an additional cost that would be within the estimated budget with a satisfactory level of the performance which match with consumer requirements. The problem of research is to ensure that the project is completed with the required quality Is subject to constraints, such as time, cost and performance, so this requires prioritizing multiple goals. The project
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreInterval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreReceipt Date:10/11/2021 Acceptance Date:29/12/2021 Publication Date:31/12/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
The study aimed to clarify the conceptual explanations and the theoretical rooting of the concept of the populist phenomenon. And explore the political and cultural implications and connotations contained in populist political discourse. And to stand on the foundations and meanings on w
... Show MoreExcessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M
... Show More