Preferred Language
Articles
/
WxZ-tIcBVTCNdQwCplxZ
Effect of Annealing Temperature on the Structure and Optical Properties of CdS: Cu Thin Films Prepard By Thermal Vacuum Evaporation
...Show More Authors

Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study Influence of Substrate Temperature on Optical Properties of CdS Thin Films Prepared by Chemical Spray pyrolysis
...Show More Authors

This study aims to prepare Cadmium Sulphide (CdS) thin films using thermal Chemical Spray Pyrolysis (CSP) on glass of different temperatures substrate from cadmium nitrate solution. Constant thickness was (430 ± 20 nm) and the effect of substrate temperature on the optical properties of prepared thin films.

Optical properties have been studied from transmittance and absorbance spectral within wavelengths range (360 - 900 nm). The results show that all the prepared films have a direct electron transitions and optical energy gap between (2.31-2.44 eV). They also show that the transmittance and optical energy gap of films prepared from nitrate solution increase with increasing of substrate temperature, then transmittance start do

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Apr 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Substrate Temperature Effect on the Structure, Morphological and Optical Properties of CuO/Sapphire Thin Films Prepared by Pulsed Laser deposition
...Show More Authors

This paper addresses the substrate temperature effect on the structure, morphological and optical properties of copper oxide (CuO) thin films deposited by pulsed laser deposition (PLD) method on sapphire substrate of 150nm thickness. The films deposited at two different substrate temperatures (473 and 673)K. The atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and UV-VIS transmission spectroscopy were employed to characterize the size, morphology, crystalline structure and optical properties of the prepared thin films. The surface characteristics were studied by using AFM. It is found that as the substrate temperature increases, the grain size increased but the surface roughness decreased.  The FTIR spec

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 03 2019
Journal Name
Diyala Journal For Pure Scince
Study influence of thickness and electrode mater on some electrical properties for ZnSe thin films prepared by thermal evaporation in vacuum
...Show More Authors

Thin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper

Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Effect of Annealing Temperature on The Some Electrical Properties of InSb:Bi Thin Films
...Show More Authors

InSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.

View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Journal Of Engineering And Applied Sciences
Effect of silver doping for performance of CdS solar cell prepared by thermal vacuum evaporation
...Show More Authors

Publication Date
Sat Mar 18 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Annealing on The Structural and Optical Properties of SnS Thin Films
...Show More Authors

 Thin  films   of  pure   tin mono-sulfide  SnS with thicknesses of   (0.85) μm  were prepared by chemical spray  pyrolysis  technique  and  annealed for  two  hours with 673K.The effect of annealing on structural and optical properties for films prepared was  studied.  X-Ray   diffraction  analysis  showed   the  polycrystalline  with   orthorhombic structure.  It was  found  that   annealing process increased the intensity of diffraction peaks. Optical   properties  of  all  samples  were studied by  recording  the  absorption  and  transmission &nbsp

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
The Study of properties structure and some optical properties forcopper Oxid (CuO) Thin film prepared by thermal evaporation in Vacume
...Show More Authors

in this paper copper oxide (cuO thin films were prepared by the method of vacum thermal evaporation a pressure.

View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Effects of copper doping and annealing on the structure and optical properties of ZnxCdx-1S thin films
...Show More Authors

Effect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 14 2015
Journal Name
Ibn Al-haitham J. For Pure & Appl. Sci.
Effect of Annealing Temperature and Thickness on the Structural and Optical Properties of CdSeThin Films
...Show More Authors

CdSe alloy has been prepared successfully from its high purity elements. Thin films of this alloy with different thicknesses (300,700)nm have been grown on glass substrates at room temperature under very low pressure (10-5)Torr with rate of deposition (1.7)nm/sec by thermal evaporation technique, after that these thin films have been heat treated under low pressure (10-2)Torr at (473,673)K for one hour. X-ray patterns showed that both CdSe alloy and thin films are polycrystalline and have the hexagonal structure with preferential orientation in the [100] and [002] direction respectively. The optical measurements indicated that CdSe thin films have allowed direct optical energy band gap, and it increases from (1.77- 1.84) eV and from

... Show More
Publication Date
Thu Mar 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Annealing Temperature and Thickness on the Structural and Optical Properties of CdSeThin Films
...Show More Authors

CdSe alloy has been prepared successfully from its high purity elements. Thin films of this alloy with different thicknesses (300,700)nm have been grown on glass substrates at room temperature under very low pressure (10-5)Torr with rate of deposition (1.7)nm/sec by thermal evaporation technique, after that these thin films have been heat treated under low pressure (10-2)Torr at (473,673)K for one hour. X-ray patterns showed that both CdSe alloy and thin films are polycrystalline and have the hexagonal structure with preferential orientation in the [100] and [002] direction respectively. The optical measurements indicated that CdSe thin films have allowed direct optical energy band gap, and it increases from (1.771.84) eV and from (1.6-1

... Show More
View Publication Preview PDF