The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), Teaching Learning Based Algorithm and Harmony Search Algorithm (GA, TLBO and HS). This segment of the research constitutes of two parts the first emphasises on the outcome of the five simulation algorithms and then identifies the best, while the second part is about comparing the best with the search algorithm work in 2009, the applicability of BAT Algorithm and Gravitational Search Algorithm (GSABAT) to planning problems, the technique used for calculating master production scheduling, and the very important results and recommendations for future studies
In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete
... Show MoreThis research aims at building a proposed training program according to the self-regulated strategies for the mathematics teachers and to identify the effect of this program on relational Mathematics of teachers. The sample of the research was (60) Math teachers; (30) teachers as experimental group and (30) teachers as control group. The results of the current research reacheded that the proposed training program according to some self-managed learning strategies, meets the needs of trainees with remarkable effectiveness to improve the level of their teaching performance to achieve the desired goals. Training teacher according to self-managed learning strategies is effective in bringing about the transition of training to their students
... Show MoreThis study aims at finding out the sentimental smartness of the kindergarten children
and its relationship with some variables.
1- The level of the sentimental smartness of the kindergarten children.
2- Investigating the Zero hypothesis in that there are no significant statistical differences in
the sentimental smartness between the kindergarten children according to the sex variables
(males and females).
Some statistical tools have been used in order to arrive at the results that verify the
hypotheses of this study. The researcher uses (1) the distinctive power between two
distinctive groups; (2) the relationship between the item and the total degree (Pearson
correlation factor); and (3) Elfakronbach formula t
The study aimed to get acquainted with kindergarten teachers in the development of
emotional intelligence in children, To achieve this a study too, which consisted of 40 items,
within four areas was condncted: (managing emotions, emotional knowledge, empathy, social
networking) The study tool was applied to the sample amounting (200) teachers of the
kindergarten teachers in the province of Jerash and after analyzing the results statistically
using arithmetic averages standard deviations and variance analysis quartet the following
results were reached :
- presence of statistically significant differences at the level of (α =0,05) is attributable to the
impact of the educational level in the areas of empathy and so
The research aims to study the entrepreneurial performance of the banks, according to the intelligence of competitive and strategic as the entrepreneurial performance is the one who does not stand the benefits of excellence in accomplished when just achieving the bank's objectives planned, but exceed it down to creativity in accomplishing these goals in a manner leads to making a entrepreneurial bank in the markets and the focus the eyes of competitors and the banks and other Following his example.
Was chosen the subject of research and strategic intelligence and competitive because of its impact on the strategic success of the banking sector, the fact is the entrepreneurial in the Iraqi banking mar
... Show More