The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), Teaching Learning Based Algorithm and Harmony Search Algorithm (GA, TLBO and HS). This segment of the research constitutes of two parts the first emphasises on the outcome of the five simulation algorithms and then identifies the best, while the second part is about comparing the best with the search algorithm work in 2009, the applicability of BAT Algorithm and Gravitational Search Algorithm (GSABAT) to planning problems, the technique used for calculating master production scheduling, and the very important results and recommendations for future studies
To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo
... Show MoreThe main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
This research aims to clarify the importance of an accounting information system that uses artificial intelligence to detect earnings manipulation. The research problem stems from the widespread manipulation of earning in economic entities, especially at the local level, exacerbated by the high financial and administrative corruption rates in Iraq due to fraudulent accounting practices. Since earning manipulation involves intentional fraudulent acts, it is necessary to implement preventive measures to detect and deter such practices. The main hypothesis of the research assumes that an accounting information system based on artificial intelligence cannot effectively detect the manipulation of profits in Iraqi economic entities. The researche
... Show MoreAmong a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
The wavelets have many applications in engineering and the sciences, especially mathematics. Recently, in 2021, the wavelet Boubaker (WB) polynomials were used for the first time to study their properties and applications in detail. They were also utilized for solving the Lane-Emden equation. The aim of this paper is to show the truncated Wavelet Boubaker polynomials for solving variation problems. In this research, the direct method using wavelets Boubaker was presented for solving variational problems. The method reduces the problem into a set of linear algebraic equations. The fundamental idea of this method for solving variation problems is to convert the problem of a function into one that involves a finite number of variables. Diff
... Show MoreThis paper includes the application of Queuing theory with of Particle swarm algorithm or is called (Intelligence swarm) to solve the problem of The queues and developed for General commission for taxes /branch Karkh center in the service stage of the Department of calculators composed of six employees , and it was chosen queuing model is a single-service channel M / M / 1 according to the nature of the circuit work mentioned above and it will be divided according to the letters system for each employee, and it was composed of data collection times (arrival time , service time, departure time)
... Show More
My research deals with the positions that the Prophet (PBUH) distressed. And condolences to those who lost her father and other problems and calamities that impede the life of women, has been given to the Lord of men, and good qualities, to strike the nation's finest proverbs in ensuring lost and lost of women and children, to be shown to us humanity in its finest form, and the best analyzed, and I hope God help And guidance and Rashad
In this paper, we consider the problem of stochastic project network when some or all activities are interrupted. An approach has been built to schedule the critical activities, by constructing some expressions based on the project lateness costs due to the interruption activities. Two simple example are presented to validate our approach.
Key words: Project Management, Project scheduling, Stochastic activity duration, Stochastic PERT.
Introduction
Recently, Projects planning and optimal timing, under uncertainty are extremely critical for many organizations, see [19]. Having an effective mathematical model wi
... Show MoreIn this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be f
... Show More