Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
Background: Assessment is an important part of the learning cascade in education. Students realize it as an influential motivator to direct and guide their learning. The method of assessment determines the way the students reach high levels of learning. It has been documented that one of factor affecting students’ choice of learning approach is the way how assessment is being performed. Many methods of assessment namely multiple choice questions, essay questions and others are mainly used to assess basic science knowledge in undergraduate education. Objectives: The aim of this study is to compare multiple choice questions (MCQ) and essay questions (EQ) (record the success and failure rate of multiple choice questions (MCQ) and essay quest
... Show MoreBackground: Intestinal parasitic infections including amoebiasis, blastocystosis, giardiasis, are all worldwide distribution with harmful effects, it is an important cause of morbidity and death rate in the poor countries. Objective: This study was done to collect information of the frequency of these diseases in some regions of Baghdad. Our objectives are to detect the frequency of human pathogenic parasites in some regions of Baghdad in stool samples of patients who would attend to AL-Kindy Teaching Hospital, Medical City Teaching Hospital and to determine the most common age group affected. Materials and Methods: Data were collected from Al-Kindy Teaching Hospital and Medical City Teaching Hospital, in the lab of parasitology fro
... Show MoreThe aim of the research is to identify the cognitive method (rigidity flexibility) of third-stage students in the collage of Physical Education and Sports Sciences at The University of Baghdad, as well as to recognize the impact of using the McCarthy model in learning some of skills in gymnastics, as well as to identify the best groups in learning skills, the experimental curriculum was used to design equal groups with pre test and post test and the research community was identified by third-stage students in academic year (2020-2021), the subject was randomly selected two divisions after which the measure of cognitive method was distributed to the sample, so the subject (32) students were distributed in four groups, and which the pre te
... Show More