Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r
... Show MoreThe typical test for diagnosis of severe acute respiratory syndrome coronavirus 2 is a reverse transcription-polymerase chain reaction (RT-PCR) technique, but the chest CT scan might play a complementary role at the first detection of Coronavirus Disease 2019 (COVID-19) pneumonia. Objectives: To determine the sensitivity of CT scan on patients with COVID-19 in Al-Najaf, Iraq, and to compare the accuracy of CT scan with that of RT-PCR technique. Material and Method: This is a prospective study. The patients suspicious of having COVID-19 infection and respiratory symptoms were registered. All patients were diagnosed by RT-PCR and chest CT. Diagnostic performance of CT was intended using RT-PCR as the reference sta
... Show Moreorder to increase the level of security, as this system encrypts the secret image before sending it through the internet to the recipient (by the Blowfish method). As The Blowfish method is known for its efficient security; nevertheless, the encrypting time is long. In this research we try to apply the smoothing filter on the secret image which decreases its size and consequently the encrypting and decrypting time are decreased. The secret image is hidden after encrypting it into another image called the cover image, by the use of one of these two methods" Two-LSB" or" Hiding most bits in blue pixels". Eventually we compare the results of the two methods to determine which one is better to be used according to the PSNR measurs
The aim of the research is to identify the cognitive method (rigidity flexibility) of third-stage students in the collage of Physical Education and Sports Sciences at The University of Baghdad, as well as to recognize the impact of using the McCarthy model in learning some of skills in gymnastics, as well as to identify the best groups in learning skills, the experimental curriculum was used to design equal groups with pre test and post test and the research community was identified by third-stage students in academic year (2020-2021), the subject was randomly selected two divisions after which the measure of cognitive method was distributed to the sample, so the subject (32) students were distributed in four groups, and which the pre te
... Show More