Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
Modern trends have appeared recently in educational thought that call for the achievement of the outcomes of the educational process. Some of these trends are the development of individual thinking skills, considering the individual differences, and learning basic skills. The five-year learning cycle is one of these models. It is called as five-year learning cycle because it passes through five stages. These five stages are: (operate - discover - clarify - expand – Evaluate), which make the learner as the main axis for activating thinking processes. This can be done by organizing study materials through research, investigation, and identifying concepts by himself, as in learning sports skills that depend on motor performance and teamwork,
... Show MoreThe typical test for diagnosis of severe acute respiratory syndrome coronavirus 2 is a reverse transcription-polymerase chain reaction (RT-PCR) technique, but the chest CT scan might play a complementary role at the first detection of Coronavirus Disease 2019 (COVID-19) pneumonia. Objectives: To determine the sensitivity of CT scan on patients with COVID-19 in Al-Najaf, Iraq, and to compare the accuracy of CT scan with that of RT-PCR technique. Material and Method: This is a prospective study. The patients suspicious of having COVID-19 infection and respiratory symptoms were registered. All patients were diagnosed by RT-PCR and chest CT. Diagnostic performance of CT was intended using RT-PCR as the reference sta
... Show MoreObjectives:
To evaluate mothers’ attitudes toward readiness for discharge care at home for a premature baby in Intensive Care Unit at teaching hospitals in Medical City Complex and to find out the relationship between mothers’ attitudes and their socio-demographic characteristics.
Methodology: A quasi-experimental study design was carried out through the period of 6th January 2020 to 2021 to 11th March 2021, to evaluate mother’s attitude toward discharge care plan for premature babies. The study carried out in Welfare Teaching Hospital, Nursing Home Hospital and Baghdad Teaching Hospital at Medical City Complex in Baghdad City on 30 mother of premature babies in neonatal intensive care units using the nonprobability sampling
The research aimed to evaluate the financial performance of the Public Company for the manufacture of medicines and medical supplies / Samarra - Iraq to know the strengths and weaknesses that affect its performance, as well as to compare its performance in the years between (2017-2019), which are characterized by security stability with its performance in previous years (2014 -2016) which is characterized by security instability, to assess the extent of its ability to achieve growth in performance, by answering the main question, what is the evaluation of the performance of the Public Company for the manufacture of medicines and medical supplies / Samarra - Iraq in the light of financial indicators?
... Show MoreBackground: A carefully planned clinical medical education is critical for the provision of supportive clinical educational environment. The latter will ensure effective teaching, active learning and good attitudes and performance at the bedside. The aim of this study was to evaluate clinical learning environment at AL-Diwaniyah Teaching Hospital. Materials and Methods: A descripitive cross-sectional study involved resident doctors from Internal Medicine and Surgery departments who had six months or more residency training in the respective departments. Data were collected using the Postgraduate Hospital Educational Environment Measure. Data where analyzed using the Statistical Package for Social Sciences version 21.0 and presented us
... Show MoreOBJECTIVE: To evaluate the patient satisfaction to hospital services and identify factors that influences this satisfaction.
The fabrication of Solid and Hollow silver nanoparticles (Ag NPs) has been achieved and their characterization was performed using transmission electron microscopy (TEM), zeta potential, UV–VIS spectroscopy, and X-ray diffraction (XRD). A TEM image revealed a quasispherical form for both Solid and Hollow Ag NPs. The measurement of surface charge revealed that although Hollow Ag NPs have a zeta potential of -43 mV, Solid Ag NPs have a zeta potential of -33 mV. According to UV-VIS spectroscopy measurement Solid and Hollow Ag NPs both showed absorption peaks at wavelengths of 436 nm and 412 nm, respectively. XRD pattern demonstrates that the samples' crystal structure is cubic, similar to that of the bulk materials, with
... Show More