Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show Moreيهدف البحث الى دراسة وتحليل الهندسة المتزامنة (CE) وتحسين التكلفة(CO)، واستعمال مخرجات الهندسة المتزامنة كمدخلات لتحسين التكلفة، وبيان دور الهندسة المتزامنة في تحسين جودة المنتوج، وتحقيق وفورات في وقت التصميم والتصنيع والتجميع وتخفيض التكاليف، فضلاً عن توظيف بعض النماذج لتحديد مقدار الوفورات في الوقت ومنها نموذج(Lexmark) ونموذج (Pert) لتحديد الوفورات في وقت التصميم وقت لتصنيع والتجميع. ولتحقيق اهداف
... Show More
The research aims to study and analysis of concurrent engineering (CE) and cost optimization (CO), and the use of concurrent engineering inputs to outputs to improve the cost, and the statement of the role of concurrent engineering in improving the quality of the product, and achieve savings in the design and manufacturing time and assembly and reduce costs, as well as employing some models to determine how much the savings in time, including the model (Lexmark) model (Pert) to determine the savings in design time for manufacturing and assembly time.
To achieve the search objectives, the General Company for Electrical and Electronic Industries \ Refrigerated Engine
... Show MoreThis research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to
... Show MoreIn this paper two modifications on Kuznetsov model namely on growth rate law and fractional cell kill term are given. Laplace Adomian decomposition method is used to get the solution (volume of the tumor) as a function of time .Stability analysis is applied. For lung cancer the tumor will continue in growing in spite of the treatment.
We report herein an innovative approach to prostate tumor therapy using tumor specific radioactive gold nanoparticles (198Au) functionalized with Mangiferin (MGF). Production and full characterization of MGF-198AuNPs are described. In vivo therapeutic efficacy of MGF-198AuNPs, through intratumoral delivery, in SCID mice bearing prostate tumor xenografts are described. Singular doses of the nano-radiopharmaceutical (MGF-198AuNPs) resulted in over 85% reduction of tumor volume as compared to untreated control groups. The excellent anti-tumor efficacy of MGF-198AuNPs are attributed to the retention of over 90% of the injected dose within tumors for long periods of time. The retention of MGF-198AuNPs is also rationalized in terms of the higher
... Show MoreThis comprehensive review examines the efficacy and safety of tumor necrosis factor-alpha (TNF-α) inhibitors in treating various autoimmune diseases, and focuses on their application in Iraqi patients. Elevated TNF-α levels are linked to autoimmune disorders, leading to the development of anti-TNF-α therapies such as infliximab, etanercept, adalimumab, certolizumab pegol, and golimumab, which have gained FDA approval for conditions like psoriasis, in¬flammatory bowel disease, ankylosing spondylitis, and rheumatoid arthritis. While these therapies demonstrate sig¬nificant therapeutic benefits, including improved quality of life and disease management, they also carry risks, such as increased susceptibility to infections and pote
... Show MoreBackground: Manuka honey (MH) is a mono-floral honey derived from the Manuka tree (Leptospermum scoparium). MH is a highly recognized for its non-peroxide antibacterial activities, which are mostly related to its unique methylglyoxal content (MGO) in MH. The beneficial phytochemicals in MH is directly related to their favorable health effects, which include wound healing, anticancer, antioxidant, and anti-inflammatory properties. Aims: The purpose of this study was to evaluate the effect of MH on pro-inflammatory cytokines (IL-8 and TNF-α) in patients with gingivitis and compare it with chlorhexidine (CHX) and distilled water (DW). Materials and Methods: This study was a randomized, double blinded, and parallel clinical trial. Forty-fiv
... Show More