Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo
... Show MoreBackground: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti
Background: Nasopharyngeal carcinoma (NPC) is one of the most challenging tumors because of their relative inaccessibility and that their spread can occur without significant symptoms with few signs, but Radiotherapy (RT) has a role in treatment of it.
Objectives: To show that RT is still the modality of choice in the treatment of NPC, to study modes of presentations, commonest histopathological types and their percentages, to show differences in the sensitivities of these types to RT and to find out a 5 year survival rate(5YSR) and its relation with lymph node involvement.
Methods: This is a retrospective study of 44 patients with NPC who were treated with routine RT from 1988-2007 at the institute of radiology and nuclear medicin
The study aimed to prepare quick response codes to learn some of the technical skills of the second graders in the Faculty of Physical Education and Sports Sciences. The experimental method was used in the design of the experimental and control experimental and control groups. The research sample was represented by second-graders in the College of Physical Education and Sports Sciences / University of Baghdad, and by lot, the second division (a) was chosen to represent the experimental group that applied the inverse method using the QR code, and the second division (g) to represent the control group and applied the traditional method. (10) Students per group. After the tribal tests, his main experiment was carried out for 10 weeks with one
... Show MoreObjective: To assess the clinical learning environment and clinical training for students' in maternal and child
health nursing.
Methodology: A descriptive study was conducted on non probability sample (purposive) of (175) students' in
Nursing College/ University of Baghdad for the period of June 19th to July 18th 2013. A questionnaire was used as a
tool of data collection to fulfill with objective of the study and consisted of three parts, including demographic,
clinical learning environment and clinical training for students' in maternal and child health nursing. Descriptive
statistical analyses were used to analyze the data.
Results: The results of the study revealed that the 65.1% of student at age which ranged b
The study aimed to prepare quick response codes to learn some of the technical skills of the second graders in the Faculty of Physical Education and Sports Sciences. The experimental method was used in the design of the experimental and control experimental and control groups. The research sample was represented by second-graders in the College of Physical Education and Sports Sciences / University of Baghdad, and by lot, the second division (a) was chosen to represent the experimental group that applied the inverse method using the QR code, and the second division (g) to represent the control group and applied the traditional method. (10) Students per group. After the tribal tests, his main experiment was carried out for 10 weeks with one
... Show MoreInformation security contributes directly to increase the level of trust between the government’s departments by providing an assurance of confidentiality, integrity, and availability of sensitive governmental information. Many threats that are caused mainly by malicious acts can shutdown the egovernment services. Therefore the governments are urged to implement security in e-government projects.
Some modifications were proposed to the security assessment multi-layer model (Sabri model) to be more comprehensive model and more convenient for the Iraqi government. The proposed model can be used as a tool to assess the level of security readiness of government departments, a checklist for the required security measures and as a commo
This work presents a computer studying to simulate the charging process of a dust grain immersed in plasma with negative ions. The study based on the discrete charging model. The model was developed to take into account the effect of negative ions on charging process of dust grain.
The model was translated to a numerical calculation by using computer programs. The program of model has been written with FORTRAN programming language to calculate the charging process for a dust particle in plasma with negative ion, the time distribution of a dust charge, number charge equilibrium and charging time for different value of ηe (ratio of number density of electron to number density of positive ion).
Eye loss may be caused as a result of eye trauma, accidents, or malignant tumors, which leads the patient to undergo surgery to remove the damaged parts. This research examines the potential of computer vision represented by Structure from Motion (SfM) photogrammetry in fabricating the orbital prosthesis as a noninvasive and low-cost technique. A low-cost camera was used to collect the data towards extracting the dense 3D data of the patient facial features following Structure from Motion-Multi View Stereo (SfM-MVS) algorithms. To restore the defective orbital, a Reverse Engineering (RE) based approach has been applied using the similarity RE algorithms based on the opposite healthy eye to rehabilitate the defected orbital precisely
... Show More