Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
The topic of urban transformations has attracted the attention of researchers as it is one of the basic issues through which cities can be transformed towards sustainability. A specific level of transformation levels according to a philosophical concept known as a crossing. This article has relied on a specific methodology that aims to find a new approach for urban transformation based on the crossing concept. This concept derives from philosophical entrances based on the concepts of (being, process, becoming, and integration). Four levels have been for the crossing are (normal, ascending, leap, and descending). Each of these levels includes specific characteristics that distinguish it. The results showed that there is no descending
... Show MoreBackground: Frovatriptan succinate (FVT) is an effective medication used to treat migraines; however, available oral formulations suffer from low permeability; accordingly, several formulations of FVT were prepared. Objective: Prepare, optimize, and evaluate FVT-BE formulation to develop enhanced intranasal binary nano-ethosome gel. Methods: Binary ethosomes were prepared using different concentrations of phospholipid PLH90, ethanol, propylene glycol, and cholesterol by thin film hydration and characterized by particle size, zeta potential, and entrapment efficiency. Furthermore, in-vitro, in-vivo, ex-vivo, pharmacokinetics, and histopathological studies were done. Results: Regarding FVT-loaded BE, formula (F9) demonstrated the best paramet
... Show MoreThis paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
The disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD
... Show MoreDesert truffle is considered as a type of Syrian wild fungi that spreads heavily, and it occupies important rank in folk medicine, where its aqueous extract is used for the treatment of some eye and skin illnesses, and people prefer the use of black truffle. This work interested in studying of the most available species; Terfezia claveryi (black) and Tirmania pinoyi (white). The extracts of the two species of truffle were prepared by maceration with water, methanol, and ethanol 70%. Their total phenolic contents (TPC) and total flavonoid contents (TFC) were analyzed using Folin-ciocalteu and Aluminum chloride methods respectively, and their antioxidant activities was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
... Show MoreWater pollution has created a critical threat to the environment. A lot of research has been done recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS based on colloidal Ag nanoflowers. The chemical method was used to synthesize nanoflowers from silver ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This nanoflowers SERS action in detecting Na3PO4 was reported and analyzed
... Show MoreThis paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show More