Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
Several directional wells have been drilled in Majnoon oilfield at wide variation in drilling time due to different drilling parameters applied for each well. This technical paper shows the importance of proper selection of the bit, Mud type, applied weight on Bit (WOB), Revolution per minute (RPM), and flow rate based on the previous wells drilled. Utilizing the data during drilling each section for directional wells that's significantly could improve drilling efficiency presented at a high rate of penetration (ROP). Based on the extensive study of three directional wells of 35 degree inclination (MJ-51, MJ-52, and MJ-54) found that the applied drilling parameters for MJ-54 and the bit type within associated drilling parameters to drill
... Show Moreناقش البحث في طياته عدداً من القضايا الرئيسة المتعلقة بالتقييم الاستراتيجي والإطار العام للخطة الاستراتيجية المقترحة لشركة نفط ميسان للسنوات الخمس المقبلة (2020_2024)، وهدف هذا البحث يتمحور في تقييم عملية صياغة استراتيجية شركة نفط ميسان لتحديد نقاط القوة وتعضيدها ومواطن الضعف ومحاولة معالجتها لتجنب الوقوع بها عند وضع استراتيجية للسنوات القادمة، وعلى هذا الاساس فان مشكلة البحث تكمن في مدى نجاح الاستراتي
... Show Morethis paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
A series of heterogeneous basic catalysts of CaO, MgO and CaMgO2 at different calcination temperature were synthesized via solution combustion method. Different characterization techniques have been carried out to investigate the structure of the produced catalysts i.e. X-ray diffraction (XRD), particle size analyzer, morphology by atomic force microscope (AFM) and reflection using UV-VIS diffuse reflectance spectra. The particles size analyzer revealed that the mixed oxide catalysts calcined at different calcination temperature possess smaller nano size particles compared to pure CaO. Moreover, the energy band gap was calculated based on the results of diffuse reflectance spectra. The energy band gap was redu
... Show MoreTwo locally isolated microalgae (Chlorella vulgaris Bejerinck and Nitzschia palea (Kützing) W. Smith) were used in the current study to test their ability to production biodiesel through stimulated in different nitrogen concentration treatments (0, 2, 4, 8 gl ), and effect of nitrogen concentration on the quantity of primary product (carbohydrate, protein ), also the quantity and quality of lipid. The results revealed that starvation of nitrogen led to high lipid yielding, in C. vulgaris and N. palea the lipid content increased from 6.6% to 40% and 40% to 60% of dry weight (DW) respectively.Also in C. vulgaris, the highest carbohydrate was 23% of DW from zero nitrate medium and the highest protein was 50% of DW in the treatment 8gl. Whil
... Show More