Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
A concept of indoor solar illumination is described and simulated. The solar illumination system is composed of a tracking primary reflector, a selective secondary reflector, a visible light guide and a scattering solid glass tube fixture. Each part of the solar illumination system is optically suited and compatible with other parts to realize high efficiency. The simulation is conducted for Baghdad city for a library hall. Two major days over a year are chosen to investigate the illumination system for acceptable visible light level for reading hall. The two days are: summer solstice day and winter solstice day at 8:00 AM and 12:00 PM for each. Research results showed that the design of the solar system is achieved on the base of minimu
... Show MoreThe role of relaxation program for reducing anxiety of patients in dental clinic
In this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreVisible Light Communication (VLC) has emerged as a powerful technique for wireless communication systems. Providing high data rate and increasing capacity are the major problems in VLC. Recent evidence suggests that Multiple Input Multiple Output (MIMO) technique can offers improved data rates and increased link range. This paper describes the design and implementation of visible light communication system in indoor environment exploring the benefits of MIMO. The specific objective of this research was to implement a 4× 4 Multiple Input (LEDs) Multiple Output (photodetectors)-VLC communication system, where a 16 white power LEDs in four arrays are setting up at transmitter and four RX modules are setting up at receiver side without the nee
... Show MoreA spectrophotometric determination of azithromycin was optimized using the simplex model. The approach has been proven to be accurate and sensitive. The analyte has been reacted with bromothymol blue (BTB) to form a colored ion pair which has been extracted in chloroform in a buffer medium of pH=4 of potassium phthalate. The extracted colored product was assayed at 415 nm and exhibited a linear quantification range over (1 - 20) g/ml. The excipients did not exhibit any interferences with the proposed approach for assaying azithromycin in pharmaceutical formulations.
The current research is concerned with the prices of Goods and materials in the Iraqi slang a descriptive, lexicographic , and semantic study expressing the meanings of these names and their positions , as well as expressing the imaginations of Human mind , the popular mind in describing these goods with evaluating them besides the semantic of each word accordingly
The current research is divided into two parts , the first part is consisted of Vocalizations" words" That are arisen through cognitive naming that concentrate on the mental imaginations for the most important and sensitive such as colors , taste , shapes and forms impacts of Goods and materials according to users' ' taste for those words , on other hand, the second part of
This paper is concerned with Double Stage Shrinkage Bayesian (DSSB) Estimator for lowering the mean squared error of classical estimator ˆ q for the scale parameter (q) of an exponential distribution in a region (R) around available prior knowledge (q0) about the actual value (q) as initial estimate as well as to reduce the cost of experimentations. In situation where the experimentations are time consuming or very costly, a Double Stage procedure can be used to reduce the expected sample size needed to obtain the estimator. This estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y( ) and for acceptance region R. Expression for
... Show MoreComputations of the relative permeability curves were made through their representation by two functions for wetting and nonwetting phases. Each function contains one parameter that controls the shape of the relative permeability curves. The values of these parameters are chosen to minimize an objective function, that is represented as a weighted sum of the squared differences between experimentally measured data and the corresponding data calculated by a mathematical model simulating the experiment. These data comprise the pressure drop across core samples and the recovery response of the displacing phase. Two mathematical models are constructed in this study to simulate incompressible, one-dimensional, two-phase flow. The first model d
... Show More