Preferred Language
Articles
/
WhjQM5UBVTCNdQwCnSpv
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 27 2021
Journal Name
Turkish Online Journal Of Qualitative Inquiry
The Discoursal Aspects of Medical Encounters
...Show More Authors

This paper exclusively deals with medical encounters. . Structurally and thematically, it manifests itself in five parts. The First part deals with medical encounters as well as essential speech activities which cover (a) frames (certain types of talk) (b) the patient’s account and the patient’s story or more precisely the patient telling his story and (c) the act of questioning the patient. The Second part revolves round genre and register. The former, in most cases, suggests that the format of medical encounters is conversational. With register; we have a converse reality that restrictively tries to narrow things and give them a certain flavor. The Third part realizes the technicalities of medical encounters (a) the setting of an inte

... Show More
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
Teen-Computer Interaction: Building a Conceptual Model with Thoughts- Emotion-Behaviour
...Show More Authors

Teen-Computer Interaction (TeenCI) stands in an infant phase and emerging in positive path. Compared to Human-Computer Interaction (generally dedicated to adult) and Child-Computer Interaction, TeenCI gets less interest in terms of research efforts and publications. This has revealed extensive prospects for researchers to explore and contribute in the region of computer design and evaluation for teen, in specific. As a subclass of HCI and a complementary for CCI, TeenCI that tolerates teen group, should be taken significant concern in the sense of its context, nature, development, characteristics and architecture. This paper tends to discover teen’s emotion contribution as the first attempt towards building a conceptual model for TeenC

... Show More
View Publication Preview PDF
Clarivate Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
A Visual Interface Design for Evaluating the Quality of Google Map Data for some Engineering Applications
...Show More Authors

Today, there are large amounts of geospatial data available on the web such as Google Map (GM), OpenStreetMap (OSM), Flickr service, Wikimapia and others. All of these services called open source geospatial data. Geospatial data from different sources often has variable accuracy due to different data collection methods; therefore data accuracy may not meet the user requirement in varying organization. This paper aims to develop a tool to assess the quality of GM data by comparing it with formal data such as spatial data from Mayoralty of Baghdad (MB). This tool developed by Visual Basic language, and validated on two different study areas in Baghdad / Iraq (Al-Karada and Al- Kadhumiyah). The positional accuracy was asses

... Show More
View Publication
Publication Date
Fri Dec 02 2022
Journal Name
Journal Of Physical Education
The Effect of Jigsaw Strategy on Learning Spiking in Volleyball for Sophomore Students
...Show More Authors

The research aimed at designing teaching program using jigsaw in learning spiking in volleyball as well as identifying the effect of these exercises on learning spring in volleyball. The researchers used the experimental method on (25) students as experimental group and (27) students as controlling group and (15) students as pilot study group. The researchers conducted spiking tests then the data was collected and treated using proper statistical operations to conclude that the strategy have a positive effect in experimental group. Finally, the researchers recommended using the strategy in making similar studies on other subjects and skills.

Publication Date
Mon Jun 01 2015
Journal Name
. International Journal Of Computer Science And Mobile Computing
A Hybrid Lossy Image Compression based on Wavelet Transform, Polynomial Approximation Model, Bit Plane Slicing and Absolute Moment Block Truncation
...Show More Authors

Publication Date
Tue Jun 22 2021
Journal Name
Expert Systems
Hybrid intelligent technology for plant health using the fusion of evolutionary optimization and deep neural networks
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
The Effects of Conductance on Metastable Switches in Memristive Devices Based on Anti-Hebbian and Hebbian (AHaH) Learning Rules
...Show More Authors

     In the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t

... Show More
Scopus (1)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (17)
Crossref (6)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (19)
Crossref (12)
Scopus Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Preparation of Ag nanoparticles via pulsed laser ablation in liquid for biological applications
...Show More Authors

Ag nanoparticles were prepared using Nd:YAG laser from Ag matel in distilled water using different energies laser (100 and 600) mJ using 200 pulses, and study the effect of the preparation conditions on the structural characteristics of and then study the effect of nanoparticles on the rate of killing the two types of bacteria particles (Staph and E.coli). The goal is to prepare the nanoparticle effectively used to kill bacteria.

View Publication Preview PDF
Crossref (3)
Crossref