Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
In this work, a deep computational study has been conducted to assign several qualities for the graph . Furthermore, determine the amount of the dihedral subgroups in the Held simple group He through utilizing the attributes of gamma.
Background: Metabolic syndrome (MetS) is a collection of connected cardiovascular risk factors that characterizes the complicated illness. The waist circumference cutoff point fluctuation has so far defined Mets. Objective: This study aimed to determine the cutoff point for WC in healthy Iraqi adults. Methods: This cross-sectional survey establishes the standard value for WC among 300 healthy university students in Wasit city, Iraq. They are aged between 18-25 years. The receiver operator characteristic (ROC) curve was used WC to predict the presence of two or more risk factors for MetS, as defined by IDF. Results: The cutoff level yielding maximum sensitivity and specificity for predicting the presence of multiple risk factors was
... Show MoreBackground: The marginal fit is the most characteristic that closely related to the longevity or success of a restoration, which is absolutely affected by the fabrication technique. The objective of present in vitro study was to evaluate the effect of four different CAD/CAM systems on the marginal fit of lithiµm disilicate all ceramic crowns. Materials and Methods: Adentoform tooth of a right mandibular first molar was prepared to receive all ceramic crown restoration with deep chamfer finishing line (1mm) and axial reduction convergence angle of 6 degree, dentoform model duplicated to have Nickel-Chromiµm master die. Thirty two stone dies produce from master die and distributed randomly in to four groups (8 dies for each group) accor
... Show MoreTeen-Computer Interaction (TeenCI) stands in an infant phase and emerging in positive path. Compared to Human-Computer Interaction (generally dedicated to adult) and Child-Computer Interaction, TeenCI gets less interest in terms of research efforts and publications. This has revealed extensive prospects for researchers to explore and contribute in the region of computer design and evaluation for teen, in specific. As a subclass of HCI and a complementary for CCI, TeenCI that tolerates teen group, should be taken significant concern in the sense of its context, nature, development, characteristics and architecture. This paper tends to discover teen’s emotion contribution as the first attempt towards building a conceptual model for TeenC
... Show MoreWellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show MoreThis investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThis paper exclusively deals with medical encounters. . Structurally and thematically, it manifests itself in five parts. The First part deals with medical encounters as well as essential speech activities which cover (a) frames (certain types of talk) (b) the patient’s account and the patient’s story or more precisely the patient telling his story and (c) the act of questioning the patient. The Second part revolves round genre and register. The former, in most cases, suggests that the format of medical encounters is conversational. With register; we have a converse reality that restrictively tries to narrow things and give them a certain flavor. The Third part realizes the technicalities of medical encounters (a) the setting of an inte
... Show More