Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
The study introduces the twentieth century background where the image of teacher is shaped by various factors according to the wide emergence of new educational institutions in the aftermath of the Second World War. A group of writers mirrored the influence of the war on educational institutions and accordingly on the image of teacher in their novels whose main action is set in and around the campus of a university. The genre dates back to the nineteen forties. where they show the foibles of human nature and reactions to external pressures. One of the early examples of this genre is Lucky Jim (1954). The image of teacher is swinged in many shapes from the tyrant to the rebellion to the defiant. All is personified in the characters of these
... Show MoreIn the present work, the image and representation of Adela, the youngest daughter of the family of the Casa de Bernarda Alba, one of the most popular works of the Spanish author Federico García Lorca (1898-1936), will be analyzed. In this work, there are different themes, but what concerns us is to show the repression, oppression and rebellion of this character in a context of customs of the 1920s in Spain. They are revealing elements in that period in which women were relegated to the background, despite the fact that a feminist movement had already begun in Spain. By studying Adela, we seek to see how a single woman confronts her family and the society that surrounds her to fight for freedom, although its end is finally linked to
... Show MoreThe theatre is one of the main pillars of the human aesthetic thinking as it contains logical explanations for the public human life aspects outside time and environment. When we find that the directive philosophical thinking moving away from the stylistic constants and the virtual laws in taboos that control the accomplishment in terms of the traditional shapes, the employment and the theatrical reception. Some directors moved in post-modernism concepts in a perceptive that liberates thought from its natural context in thinking into an innovative perceptive. The aesthetic images are the basic premise in the prohibition of the philosophical thinking interpretation in order to move the directive thinking and this movement depends on the v
... Show MoreThe image of television dominates the cognitive and artistic motivations. It is the formulation of ideas and visions along with its documentary ability. It is the main element in television work as it is a story that is narrated in pictures. Therefore, attention to image building is a major point of gravity in the work structure as a whole. On the image is the element carrying all aesthetic and expressive values of news and information directly to the hints that work to stimulate and stir the imagination of the recipient to evoke mental images added to the visual images to deepen the meanings.
All visual arts carry elements and components that follow in a particular pattern to give special meanings and specific connotations. However,
Gypseous soil covers approximately 30% of Iraqi lands and is widely used in geotechnical and construction engineering as it is. The demand for residential complexes has increased, so one of the significant challenges in studying gypsum soil due to its unique behavior is understanding its interaction with foundations, such as strip and square footing. This is because there is a lack of experiments that provide total displacement diagrams or failure envelopes, which are well-considered for non-problematic soil. The aim is to address a comprehensive understanding of the micromechanical properties of dry, saturated, and treated gypseous sandy soils and to analyze the interaction of strip base with this type of soil using particle image
... Show MoreAbstract
This study aims to identify the reality of using electronic applications in teaching language skills to people with mild intellectual disabilities from the mothers’ perspective. A descriptive approach was used. The electronic questionnaires were administered to the study sample, 122 responses were received from mothers of the students with mild intellectual disability in Hafer Al-Baten schools. The response average rate was 94%. The results showed that there are statistically significant differences that are related to the variant of monthly income as for the barriers to using electronic applications in such schools, whereas there were no differences regarding the variant of monthly income regarding t
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show More