Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
The designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirement
... Show MoreThe importance of the research lies in knowing the effect of the exercises of the reciprocal method in developing some physical abilities in learning the performance of the players for the effectiveness of the long jump in an economical manner in terms of time and effort and knowing their positive impact and the extent of their impact in creating the required learning for students, and the research aims to prepare reciprocal style exercises in developing some abilities The researchers used the experimental method in the pre and post test for the experimental and control groups to suit the nature of the research, and the research community was identified for the long jump players, the Specialized School for Talent Care in the 2022 sports sea
... Show MoreThe aim of this study to identity using Daniel's model and Driver’s model in learning a kinetic chain on the uneven bars in the artistic gymnastics for female students. The researchers used the experimental method to design equivalent groups with a preand post-test, and the research community was identified with the students of the third stage in the college for the academic year 2020-2021 .The subject was, (3) class were randomly selected, so (30) students distributed into (3) groups). has been conducted pretesting after implementation of the curriculum for (4) weeks and used the statistical bag of social sciences(SPSS)to process the results of the research and a set of conclusions was reached, the most important of which is t
... Show MoreThe current study aimed to isolate and diagnose Candida spp yeasts that cause candidiasis with a PCR device from patients reviewed for some hospitals in Baghdad city and by 190 samples, the study recorded 123 isolates and the total percentage of infection was 64.7% .Samples were taken from different clinical cases of the vagina, blood and mouth and the Candida spp were (70.37%, 41.26%, 86.95%) respectively. Five types of yeasts were isolated and diagnosed, namely C. albicans, C. tropicalis, C. parapsilosis, C. krusei and C.glabarta. They were confirmed by PCR device and the most notable were yeast C. albicans, where 91 isolates were found, 73.98%, while the lowest infection was recorded. C.glabartawith 3 isolates, at 2.43%, significant diff
... Show MoreBackground: Diagnosis and treatment planning can be difficult with conventional radiographic methods as the orthodontic-surgical management of impacted canines requires accurate diagnosis and precise localization of the impacted canine and the surrounding structures. This study was aimed to localize and evaluate weather there is any differences in the diagnostic information provided by multi-slice computed tomography three dimensional volumetric CT images and two dimensional reconstructed panorama images (derived from CT) in subjects with impacted maxillary canines. Materials and Methods: Thirty patients including 24 female and 6 male with mean age of 18 years with suspected unilaterally or bilaterally impacted maxillary canines were evalu
... Show More