Preferred Language
Articles
/
WhflApABVTCNdQwCfIIh
Integral transforms defined by a new fractional class of analytic function in a complex Banach space
...Show More Authors
Abstract<p>In this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.</p>
Scopus Crossref
View Publication
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations
...Show More Authors

        In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using  Mathcad 15.and graphic in Matlab R2015a.

View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Application of q-Mittag-Leffer Function on Certain Subclasses of Analytic Functions
...Show More Authors

The main objective of this paper is to introduce and study the generality differential operator involving the q-Mittag-Leffler function on certain subclasses of analytic functions.  Also, we  investigate the inclusion properties of these classes, by using the concept of subordination between analytic functions.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Nov 02 2013
Journal Name
International Journal Of Computer Applications
Mixed Transforms Generated by Tensor Product and Applied in Data Processing
...Show More Authors

Finding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.

View Publication
Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Some Geometric Properties for a Certain Class of Meromorphic Univalent Functions by Differential Operator
...Show More Authors

The major target of this paper is to study a confirmed class of meromorphic univalent functions . We procure several results, such as those related to coefficient estimates, distortion and growth theorem, radii of starlikeness, and convexity for this class, n additionto hadamard product, convex combination, closure theorem, integral operators, and  neighborhoods.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Construct a New System as a Combining Function for the LFSR in the Stream Cipher Systems Using Multiplicative Cyclic Group
...Show More Authors

In this paper, we construct a new mathematical system as Multiplicative Cyclic Group (MCG), called a New Digital Algebraic Generator (NDAG) Unit, which would generate digital sequences with good statistical properties. This new Unit can be considered as a new basic unit of stream ciphers.

A (NDAG) system can be constructed from collection of (NDAG) units using a Boolean function as a combining function of the system. This system could be used in cryptography as like as Linear Feedback Shift Register (LFSR) unit. This unit is basic component of  a stream cipher system.

View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
A New Methodology to Find Private Key of RSA Based on Euler Totient Function
...Show More Authors

          The aim of this paper is to present a new methodology to find the private key of RSA. A new initial value which is generated from a new equation is selected to speed up the process. In fact, after this value is found, brute force attack is chosen to discover the private key. In addition, for a proposed equation, the multiplier of Euler totient function to find both of the public key and the private key is assigned as 1. Then, it implies that an equation that estimates a new initial value is suitable for the small multiplier. The experimental results show that if all prime factors of the modulus are assigned larger than 3 and the multiplier is 1, the distance between an initial value and the private key

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Complex Sadik and KAJ Transforms for Ordinary Differential Equations to the Response of an Uncompressed Forced Oscillator
...Show More Authors

In this paper we have presented a comparison between two novel integral transformations that are of great importance in the solution of differential equations. These two transformations are the complex Sadik transform and the KAJ transform. An uncompressed forced oscillator, which is an important application, served as the basis for comparison. The application was solved and exact solutions were obtained. Therefore, in this paper, the exact solution was found based on two different integral transforms: the first integral transform complex Sadik and the second integral transform KAJ. And these exact solutions obtained from these two integral transforms were new methods with simple algebraic calculations and applied to different problems.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Numerical Investigation of Physical Parameters in Cardiac Vessels as a New Medical Support Science for Complex Blood Flow Characteristics
...Show More Authors

This study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
A Generalized Integral of Shilkret and Choquet Integrals
...Show More Authors

In this paper we introduced a new type of integrals based on binary element sets “a generalized integral of Shilkret and Choquet integrals” that combined the two kinds of aggregation functions which are Shilkret and Choquet integrals. Then, we gave some properties of that integral. Finally, we illustrated our integral in a numerical example.
.

View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Three-Dimensional Nonlinear Integral Operator with the Modelling of Majorant Function
...Show More Authors

In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.

Mathematical Subject Classificat

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref