Preferred Language
Articles
/
WhflApABVTCNdQwCfIIh
Integral transforms defined by a new fractional class of analytic function in a complex Banach space
...Show More Authors
Abstract<p>In this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.</p>
Scopus Crossref
View Publication
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving of the Quadratic Fractional Programming Problems by a Modified Symmetric Fuzzy Approach
...Show More Authors

The aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Epidemiological Complex Networks: A Survey
...Show More Authors

     In this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc

... Show More
Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Epidemiological Complex Networks: A Survey
...Show More Authors

     In this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Sep 02 2024
Journal Name
Palestine Journal Of Mathematics
Class of Holomorphic Functions Considering Seven-Parameter Mittag-Leffler Function
...Show More Authors

Preview PDF
Scopus
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Three-Dimensional Nonlinear Integral Operator with the Modelling of Majorant Function
...Show More Authors

In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.

Mathematical Subject Classificat

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Nov 02 2013
Journal Name
International Journal Of Computer Applications
Mixed Transforms Generated by Tensor Product and Applied in Data Processing
...Show More Authors

Finding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.

View Publication
Crossref
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Complex Sadik and KAJ Transforms for Ordinary Differential Equations to the Response of an Uncompressed Forced Oscillator
...Show More Authors

In this paper we have presented a comparison between two novel integral transformations that are of great importance in the solution of differential equations. These two transformations are the complex Sadik transform and the KAJ transform. An uncompressed forced oscillator, which is an important application, served as the basis for comparison. The application was solved and exact solutions were obtained. Therefore, in this paper, the exact solution was found based on two different integral transforms: the first integral transform complex Sadik and the second integral transform KAJ. And these exact solutions obtained from these two integral transforms were new methods with simple algebraic calculations and applied to different problems.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
A New Methodology to Find Private Key of RSA Based on Euler Totient Function
...Show More Authors

          The aim of this paper is to present a new methodology to find the private key of RSA. A new initial value which is generated from a new equation is selected to speed up the process. In fact, after this value is found, brute force attack is chosen to discover the private key. In addition, for a proposed equation, the multiplier of Euler totient function to find both of the public key and the private key is assigned as 1. Then, it implies that an equation that estimates a new initial value is suitable for the small multiplier. The experimental results show that if all prime factors of the modulus are assigned larger than 3 and the multiplier is 1, the distance between an initial value and the private key

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Numerical Investigation of Physical Parameters in Cardiac Vessels as a New Medical Support Science for Complex Blood Flow Characteristics
...Show More Authors

This study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On The Double Integral Transform (Complex EE Transform) and Their Properties and Applications
...Show More Authors

Due to the importance of solutions of partial differential equations, linear, nonlinear, homogeneous, and non-homogeneous, in important life applications, including engineering applications, physics and astronomy, medical sciences, and life technology, and their importance in solutions to heat transfer equations, wave, Laplace equation, telegraph, etc. In this paper, a new double integral transform has been proposed.

In this work, we have introduced a new double transform ( Double Complex EE Transform ). In addition, we presented the convolution theorem and proved the properties of the proposed transform, which has an effective and useful role in dealing with the solution of two-dimensional partial differential equations. Moreover

... Show More
View Publication
Crossref