Epithelial and stromal communications are essential for normal uterine functions and their dysregulation contributes to the pathogenesis of many diseases including infertility, endometriosis, and cancer. Although many studies have highlighted the advantages of culturing cells in 3D compared to the conventional 2D culture system, one of the major limitations of these systems is the lack of incorporation of cells from non‐epithelial lineages. In an effort to develop a culture system incorporating both stromal and epithelial cells, 3D endometrial cancer spheroids are developed by co‐culturing endometrial stromal cells with cancerous epithelial cells. The spheroids developed by this method are phenotypically comparable to in vivo endometrial cancer tissue. Proteomic analysis of the co‐culture spheroids comparable to human endometrial tissue revealed 591 common proteins and canonical pathways that are closely related to endometrium biology. To determine the feasibility of using this model for drug screening, the efficacy of tamoxifen and everolimus is tested. In summary, a unique 3D model system of human endometrial cancer is developed that will serve as the foundation for the further development of 3D culture systems incorporating different cell types of the human uterus for deciphering the contributions of non‐epithelial cells present in cancer microenvironment.
The cancer is one of the biggest health problems that facing the world . And the bladder cancer has a special place among the most spread cancers in Arab countries specially in Iraq and Egypt(2) . It is one of the diseases which can be treated and cured if it is diagnosed early . This research is aimed at studying the assistant factors that diagnose bladder cancer such as (patient's age , gender , and other major complains of hematuria , burning or pain during urination and micturition disorders) and then determine which factors are the most effective in the possibility of diagnosing this disease by using the statistical model (logistic regression model) and depending on a random sample of (128) patients . After
... Show MoreThis study aims to measure and analyze the direct and indirect effects of the financial variables, namely (public spending, public revenues, internal debt, and external debt), on the non-oil productive sectors with and without bank credit as an intermediate variable, using quarterly data for the period (2004Q1–2021Q4), converted using Eviews 12. To measure the objective of the study, the path analysis method was used using IBM SPSS-AMOS. The study concluded that the direct and indirect effects of financial variables have a weak role in directing bank credit towards the productive sectors in Iraq, which amounted to (0.18), as a result of market risks or unstable expectations in the economy. In addition to the weak credit ratings of borr
... Show MoreThe potential use of bone marrow stromal cells as a cellular therapy for chronic diseases relies on the ability of the cell to replicate extensively in vitro.For this reason the present study investigated the replication lifespan and examined the growth properties of albino rats mesenchymal stem cells(MSCS)in vitro. To establish an in vitro system for isolating and culturing the MSCs of albino rats and to provide research data for its further application,the bone marrow (BM)was collected from young male rats and separated by gradient centrifugation.Then, the mononuclear cells(MNCs) were retrieved from the buffy layer and cultured in Modified Eagle,s Medium (MEM) supplemented with 10%Fetal Calf Serum (FCS)and incubation
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreEpithelial‐mesenchymal transition (
<span lang="EN-US">The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of e
... Show MoreThis paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem
... Show More