The study aimed to identify the effect of the ethical perception of a sample of managers in public organizations on responsible behavior in light of the rapid changes taking place in the external environment. To achieve this, the researcher followed the descriptive analytical approach by applying a questionnaire of two parts. The first part dealt with the ethical perception according to the scale of Johnson (2015), which consisted of (22) items. The second part dealt with measuring responsible behavior, which consisted of (20) items based on the scale of Development of Ethical Behavior (Narvaez, 2006) for a sample of (125) respondents randomly chosen. The results showed that the estimation degree of managers in public governmental organizations of the level of ethical perception was average with arithmetic mean (3.26) and standard deviation (1.44). Moreover, the level of responsible behavior was average with arithmetic mean (3.19) and standard deviation (1.24). The results revealed a direct statistically significant relationship between the estimation degree of managers of the level of ethical perception and that for the level of responsible behavior, as the correlation coefficient reached (0.413). They also demonstrated statistically significant differences between the average scores of managers' estimation of the level of ethical perception attributable to the personal (demographic) variables. The study recommended that the priorities of the general agenda should focus on developing ethical perceptions of leadership in public organizations, which contributes to building and promoting responsible behavior in various directions.
HTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreIn this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter
Water quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of
... Show MoreIn this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error
... Show More'Steganography is the science of hiding information in the cover media', a force in the context of information sec, IJSR, Call for Papers, Online Journal
In this study, an efficient photocatalyst for dissociation of water was prepared and studied. The chromium oxide (Cr2O3) with Titanium dioxide (TiO2) nanofibers (Cr2O3-TNFs) nanocomposite with (chitosan extract) were synthesized using ecologically friendly methods such as ultrasonic and hydrothermal techniques; such TiO2 exhibits nanofibers (TNFs) shape struct
... Show More