Moisture-induced damage is a serious problem that severely impairs asphaltic pavement and affects road serviceability. This study examined numerous variables in asphalt concrete mixtures to assess their impact on moisture damage resistance. Mix design parameters such as the asphalt content (AC) and aggregate passing sieve No. 4 (PNo. 4) were considered as variables during this study. Additionally, hydrated lime (HL) was utilized as a partial substitute for limestone dust (LS) filler at 1.5% by weight of the aggregate in asphalt concrete mixtures for the surface layer. This study also investigated the potential enhancement of traditional asphalt binders and mixtures by adding nano-additives, specifically nano-silica oxide (NS) and nano-titanium dioxide (NT), at rates ranging from 0% to 6% by weight of the asphalt binder. To quantify the moisture damage resistance of the asphalt concrete mixes, two types of laboratory tests were employed: the tensile strength ratio (TSR) and the index of retained strength (IRS). The former characterizes moisture damage using tensile strength, whereas the latter uses compression strength. The physical properties of the asphalt binder, such as its penetration, softening point, and ductility, were also evaluated to identify the effects of the nanomaterials. The results indicated that variations in the mix design variables significantly affected the moisture damage resistance of the asphalt concrete mixtures. The maximum improvement values were obtained at the optimum asphalt content (OAC) and PNo. 4 (mid-range + 6%) with TSR values of 80.45 and 82.46 and IRS values of 74.39 and 77.14, respectively. Modifying asphalt concrete mixtures with 1.5% HL resulted in improved moisture resistance compared with mixtures without HL (0% HL) at each PNo. 4 level, reaching superior performance at PNo. 4 (mid-range + 6%) by 4.58% and 3.96% in the TSR and IRS tests, respectively. Additionally, both NS and NT enhanced the physical properties of the asphalt binder, leading to substantial enhancements in asphalt concrete mixture performance against moisture damage. A 6% dosage of NS and NT showed the best performance, with NS performing slightly better than NT. TSR was increased by 14.72 and 11.55 and IRS by 15.60 and 12.75, respectively, with 6% NS and NT compared with mixtures without nanomaterials (0% NM).
SKF Dr. Abbas S. Alwan, Dhurgham I. Khudher, INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 2015
Abstract: Despite the distinct features of the continuous wave (CW) Terahertz (THz) emitter using photomixing technique, it suffers from the relatively low radiation output power. Therefore, one of effective ways to improve the photomixer emitter performance was using nanodimensions electrodes inside the optical active region of the device. Due to the nanodimension sizes and good electrical conductivity of silver nanowires (Ag-NWs), they have been exploited as THz emitter electrodes. The excited surface plasmon polariton waves (SPPs) on the surface of nanowire enhances the incident excitation signal. Therefore, the photomixer based Ag-NW compared to conventional one significantly exhibits higher THz output signal. In thi
... Show MoreDifferent additives are used in drilling fluids when the demanded properties cannot be gotten with clays. Drilling muds needs several additives and materials to give good characteristics. There are local alternatives more suitable for enhancing the rheology and filtration of drilling fluids. An experimental work had been conducted to assess the suitability of using potato starch to enhance rheological properties and filtration in drilling mud. This study investigated the potato starch as a viscosifier and fluid losses agent in drilling fluid. Results from this study proved that rheological properties of potato starch mud increased when pH of drilling fluid is increased. Potato starch could be used to enhance gel strength at low pH
... Show MoreDifferent additives are used in drilling fluids when the demanded properties cannot be gotten with clays. Drilling muds needs several additives and materials to give good characteristics. There are local alternatives more suitable for enhancing the rheology and filtration of drilling fluids. An experimental work had been conducted to assess the suitability of using potato starch to enhance rheological properties and filtration in drilling mud. This study investigated the potato starch as a viscosifier and fluid losses agent in drilling fluid. Results from this study proved that rheological properties of potato starch mud increased when pH of drilling fluid is increased. Potato starch could be used to enhance gel strength at low pH
... Show MoreIn this study, structures damage identification method based on changes in the dynamic characteristics
(frequencies) of the structure are examined, stiffness as well as mass matrices of the curved
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node
of both of them possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory
in 1994. A computer program was developing to carry out free vibration analyses of the curved
beam as well as straight beam. Comparing with the frequencies for other researchers using the general
purpose program MATLAB. Fuzzy logic syste
Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics
Abstract Background: Multidrug-resistant bacteria (MDR) often contaminate hospital environment and cause serious illnesses. Quorum Sensing (QS) regulates a variety of downstream cellular processes, including antibiotics resistance mechanisms and biofilm formation, and causes harm to the host. This study investigates antibacterial susceptibility and biofilm formation of pathogenic bacteria in hospital environment. Methods: Hundred bacterial isolates were collected from various environments in the Medical City hospital. The antimicrobial susceptibility technique was evaluated through disk diffusion method. Next, biofilms formation was detected by the microliter plate assay. Finally, PCR was used to analyze the frequency of QS system gene
... Show MoreThis experiment was conducted in field of Agricultured Department Baquba/Diyala province in spring season 2011 to study the water stress by using foliar application concentrations of each Proline acid and Abscisic acid on proline content , ABA content , chlorophyll content, protein conten and water content in leaves of Maize( cultivar, Buhooth 106). The layout of the experiments was Split- split plot design as RCBD with three replicates. The three concentrations of spraying Proline acid levels ( 0 , 150 , 200 mg Proline .l-1 ) Three Abscisic acid levels ( 0 , 15 , 20 mgABA.l-1. ) and three periods of irrigation after(25, 50, 75%) of available water . Folair fertilizer were applied at three
... Show More