The herbal remedy individually or in combination with standard medicines has been used in diverse medical treatises for the cure of different diseases. Pumpkin seed oil is one of the recognized edible oil and has substantial medicinal properties due to the presence of unique natural edible substances. Inflammation is an adaptive response that is triggered by noxious stimuli and conditions, which involves interactions amongst many cell types and mediators, and underlies many pathological processes. Unsaturated fatty acids (UFAs) can influence inflammation through a variety of mechanisms, and have been indicated as alternative anti-inflammatory agents to treat several inflammatory skin disorders. Pumpkin seed oil is rich in (UFAs), that its topical anti-inflammatory properties have been investigated. For that reason, the goal of this article was to evaluate the effects of pumpkin seed oil on acute and chronic cutaneous inflammation experimental models. The extracted pumpkin seed oil had an acceptable initial quality, when it was extracted using soxhlet extraction method and was characterized using standard methods .The physicochemical parameters of purified oil were determined. The boiling point of pumpkin seed oil was (158.90 oC) that equal to the values obtained in literature for some oil seeds, but lower than the boiling point of the oils studied, plus the melting point of pumpkin seed oil was (15.39 oC) that lead to a characteristic in cold cream manufacture. The iodine value was (104 ± 0.03 mg of KOH/g) of oil, indicated a high degree of unsaturation. The saponification value was (181± 3.2 mg KOH/g), this value indicated the pumpkin seed oil had fatty acids with higher number of carbon atoms. As a final point, the acid value was low (0.67 ± 0.09 mg KOH), while the peroxide value was low (10.03 ± 0.59 meq peroxide /kg).
Gas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in
Were arranged this study on two sections, which included first section comparison between markets proposed through the use of transport models and the use of the program QSB for less costs , dependant the optimal solution to chose the suggested market to locate new market that achieve lower costs in the transport of goods from factories (ALRasheed ,ALAmeen , AlMaamun ) to points of sale, but the second part has included comparison of all methods of transport (The least cost method ,Vogels method , Results Approximations method , Total method) depending on the agenda of transport, which includes the market proposed selected from the first section and choose the way in which check the solution first best suited in terms
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MorePore pressure means the pressure of the fluid filling the pore space of formations. When pore pressure is higher than hydrostatic pressure, it is named abnormal pore pressure or overpressure. When abnormal pressure occurred leads to many severe problems such as well kick, blowout during the drilling, then, prediction of this pressure is crucially essential to reduce cost and to avoid drilling problems that happened during drilling when this pressure occurred. The purpose of this paper is the determination of pore pressure in all layers, including the three formations (Yamama, Suliay, and Gotnia) in a deep exploration oil well in West Qurna field specifically well no. WQ-15 in the south of Iraq. In this study, a new appro
... Show MoreIn drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss
... Show MoreBackground: Medicinal plants that possess antimicrobial and antioxidant properties have garnered significant attention for their role in maintaining food quality, improving safety, and impeding spoilage. They also can aid in controlling food contamination risks and augmenting the nutritional value of foods. Objective: The study aimed to obtain botanical extracts possessing antimicrobial capabilities and use them to inhibit the growth of molds and yeasts. Additionally, these extracts are aimed at prolonging product shelf life by harnessing their antioxidant attributes. Methods: Several microorganisms, including E. coli and Pseudomonas, were subjected to testing. Ethanolic alcohol, chloroform, and essential oil extracts were prepared;
... Show MoreThe solution casting method was used to prepare a polyvinylpyrrolidone (PVP)/Multi-walled carbon nanotubes (MWCNTs) nanocomposite with Graphene (Gr). Field Effect Scanning Electron Microscope (FESEM) and Fourier Transformer Infrared (FTIR) were used to characterize the surface morphology and optical properties of samples. FESEM images revealed a uniform distribution of graphene within the PVP-MWCNT nanocomposite. The FTIR spectra confirmed the nanocomposite information is successful with apperaring the presence of primary distinct peaks belonging to vibration groups that describe the prepared samples.. Furthermore, found that the DC electrical conductivity of the prepared nanocomposites increases with increasing MWCNT concentratio
... Show MoreStudy the effect of doping V2O5 on polymers poly vinyl alcohol ( PVA), poly vinyl pyrrolidone (PVP) on the optical and structural properties for film prepared by using Casting method at thickness( 300±20)nm ,All the materials dissolved in distilled water by magnetic mixer for one hour .The optical parameters measured by using UV-VIS spectrometer ,and the structural parameters measured by X-ray diffraction .when measured the energy gap found that the value was decreases from 4.6 eV to 2.98 eV with doping .The refractive index ,extinction coefficient ,absorption coefficient ,real and imaginary dielectric constants of (PVA/PVP) are increasing with doping by V2O5 and wit
... Show MoreAbstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show More