This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters were subjected to Kruskal-Wallis test for detecting factors contributing to the degradation of water quality and for eliminating independentvariables that exhibit the highest contribution in p-value. The analysis of results revealed that ANN model was goodin predicting the WQI. The confusion matrix for Artificial Neural Model (NNM) gave almost 96% for training, 85.7%for testing and 100% for holdout. In relation to GIS, six color maps of the river have been constructed to give clearimages of the water quality along the river (PDF) Application of Artificial Neural Network and Geographical Information System Models to Predict and Evaluate the Quality of Diyala River Water, Iraq. Available from: https://www.researchgate.net/publication/346028558_Application_of_Artificial_Neural_Network_and_Geographical_Information_System_Models_to_Predict_and_Evaluate_the_Quality_of_Diyala_River_Water_Iraq [accessed Apr 07 2023].
Abstract
This Research aims for harnessing critical and innovative thinking approaches besides innovative problem solving tools in pursuing continual quality improvement initiatives for the benefit of achieving operations results effectively in water treatment plants in Baghdad Water Authority. Case study has been used in fulfilling this research in the sadr city water treatment plant, which was chosen as a study sample as it facilitates describing and analyzing its current operational situation, collecting and analyzing its own data, in order to get its own desired improvement opportunity be done. Many statistical means and visual thinking promoting methods has been used to fulfill research task.
... Show More The integration of AI technologies is revolutionizing various aspects of the apparel and textile industry, from design and manufacturing to customer experience and sustainability. Through the use of artificial intelligence algorithms, workers in the apparel and textile industry can take advantage of a wealth of opportunities for innovation, efficiency and creativity.
The research aims to display the enormous potential of artificial intelligence in the clothing and textile industry through published articles related to the title of the research using the Google Scholar search engine. The research contributes to the development of the cultural thought of researchers, designers, merchants and the consumer with the importance of integ
As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficie
... Show MoreThis paper aims to evaluate large-scale water treatment plants’ performance and demonstrate that it can produce high-level effluent water. Raw water and treated water parameters of a large monitoring databank from 2016 to 2019, from eight water treatment plants located at different parts in Baghdad city, were analyzed using nonparametric and multivariate statistical tools such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The plants are Al-Karkh, Sharq-Dijlah, Al-Wathba, Al-Qadisiya Al-Karama, Al-Dora, Al-Rasheed, Al-Wehda. PCA extracted six factors as the most significant water quality parameters that can be used to evaluate the variation in drinkin
The aim of this study was the discrimination of Salmonella isolated from chicken and their feed and drinking water for the epidemiological control of salmonellosis. Totally, 289 samples, including 217 chicken cloaca swabs, 46 water, and 26 feed samples were collected from five different farms in Karbala governorate, Iraq. Conventional bacteriology tests, API 20E, Vitek 2, and serology were used for bacterial identification. Random amplified polymorphic DNA (RAPD)-polymerase chain reaction (PCR) was applied to analyze the genetic relationships among Salmonella isolates. The isolation rate of Salmonella spp. was 21.1% (61/289). While the water samples constituted the highest rate (30.4%), a rate of
... Show MoreWith wireless sensor network (WSN) wide applications in popularity, securing its data becomes a requirement. This can be accomplished by encrypting sensor node data. In this paper a new an efficient symmetric cryptographic algorithm is presented. This algorithm is called wireless sensor network wavelet curve ciphering system (WSN-WCCS). The algorithm idea based on discrete wavelet transformation to generate keys for each node in WSN. It implements on hierarchical clustering WSN using LEACH protocol. Python programming language version 2.7 was used to create the simulator of WSN framework and implement a WSN-WCCS algorithm. The simulation result of the proposed WSN-WCCS with other symmetric algorithms has show
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreBackground: Plasma-activated water (PAW) is considered one of the emerging strategies that has been highlighted recently in the food industry for microbial decontamination and mycotoxin detoxification, due to its unique provisional characteristics. Aim: The effectiveness of PAW for aflatoxin B1 (AFB1), ochratoxin A (OTA), and fumonisin B1 (FB1) detoxification in naturally contaminated poultry feeds with its impacts on the feed quality were inspected. Methods: PAW-30 and PAW-60 were utilized for feed treatment for six time durations (5, 10, 15, 20, 40 and 60 min) each. The alterations in the physicochemical properties of PAW after different time durations of plasma inducement and treatment with and without feed samples were monit
... Show MoreThe main objectives of present study are to evaluate the trace elements pollution in the sediment of the Tigris River and drainage canals in Wasit Governorate, Iraq. Assessment of trace elements pollutants were conducted for 18 sediment samples collected in March 2017. Trace elements were analyzed in sediment Tigris River samples in Wasit Governorate. This metal pollution was evaluated using geo-accumulation (I-geo) index, Contamination Factor (CF) and Pollution Load Index (PLI). According to these statistical indices, the sediments collected from Tigris River in the study area are highly polluted with Titanium (71.9 ppm), Nickel (226.6 ppm) Chromium (425.2 ppm), Cadmium (2ppm) and Molybdenum (15.8 ppm) while the sediments&nb
... Show More