Preferred Language
Articles
/
WhYFXIcBVTCNdQwCtUc_
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq
...Show More Authors

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters were subjected to Kruskal-Wallis test for detecting factors contributing to the degradation of water quality and for eliminating independentvariables that exhibit the highest contribution in p-value. The analysis of results revealed that ANN model was goodin predicting the WQI. The confusion matrix for Artificial Neural Model (NNM) gave almost 96% for training, 85.7%for testing and 100% for holdout. In relation to GIS, six color maps of the river have been constructed to give clearimages of the water quality along the river (PDF) Application of Artificial Neural Network and Geographical Information System Models to Predict and Evaluate the Quality of Diyala River Water, Iraq. Available from: https://www.researchgate.net/publication/346028558_Application_of_Artificial_Neural_Network_and_Geographical_Information_System_Models_to_Predict_and_Evaluate_the_Quality_of_Diyala_River_Water_Iraq [accessed Apr 07 2023].

Publication Date
Mon Jul 18 2022
Journal Name
Ieee Access
Moderately Multispike Return Neural Network for SDN Accurate Traffic Awareness in Effective 5G Network Slicing
...Show More Authors

Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi

... Show More
Scopus (11)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Estimation of Heavy Metals Contamination in the Soil of Zaafaraniya City Using the Neural Network
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
The 53rd U.s. Rock Mechanics/geomechanics Symposium
Using an analytical model to predict collapse volume during drilling: A case study from southern Iraq
...Show More Authors

Scopus (7)
Scopus
Publication Date
Sun Jun 23 2019
Journal Name
American Rock Mechanics Association
Using an Analytical Model to Predict Collapse Volume During Drilling: A Case Study from Southern Iraq
...Show More Authors

Zubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump

... Show More
View Publication
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Assessment of Shatt Al-Arab Water Quality Using CCME/WQI Analysis in Basrah City of South Iraq
...Show More Authors

     The Water Quality Index (WQI) is an important parameter in describing the water resources' suitability for human uses and is one of the most effective methods of describing water quality and indicative of assessing water quality and suitability for human utilization and the health of ecosystems. WQI of the Canadian Council of Ministers of the Environment (CCME) was used in the study to describe the Shatt al-Arab water quality in Basrah Southern Iraq, and its suitability for drinking use. The data for analyzing river water samples were adopted from five stations along the river every month during the years from 2014 to 2018 by the Iraqi Ministry of Environment, as it included the measurement of acidity function PH, Dissolved Oxyg

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 29 2018
Journal Name
Environmental Earth Sciences
A preliminary assessment of the geochemical factors affecting groundwater and surface water quality around the rural communities in Al-Anbar, Western Desert of Iraq
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques
...Show More Authors

Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated.  For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos

... Show More
View Publication
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Mon Apr 09 2018
Journal Name
Al-khwarizmi Engineering Journal
Neural Network Modeling of Cutting Force and Chip Thickness Ratio for Turning Aluminum Alloy 7075-T6
...Show More Authors

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Mar 06 2022
Journal Name
Journal Of Positive School Psychology
Designing A Quality Costing System In Commercial Banks (Applied Research In The Investment Bank Of Iraq)
...Show More Authors

Preview PDF