Preferred Language
Articles
/
WhYFXIcBVTCNdQwCtUc_
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq
...Show More Authors

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters were subjected to Kruskal-Wallis test for detecting factors contributing to the degradation of water quality and for eliminating independentvariables that exhibit the highest contribution in p-value. The analysis of results revealed that ANN model was goodin predicting the WQI. The confusion matrix for Artificial Neural Model (NNM) gave almost 96% for training, 85.7%for testing and 100% for holdout. In relation to GIS, six color maps of the river have been constructed to give clearimages of the water quality along the river (PDF) Application of Artificial Neural Network and Geographical Information System Models to Predict and Evaluate the Quality of Diyala River Water, Iraq. Available from: https://www.researchgate.net/publication/346028558_Application_of_Artificial_Neural_Network_and_Geographical_Information_System_Models_to_Predict_and_Evaluate_the_Quality_of_Diyala_River_Water_Iraq [accessed Apr 07 2023].

Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization
...Show More Authors

In the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as  a particles with low-density and diameter (5 mm) in a (9.2 cm) inner diameter with height (200 cm) of vertical perspex column. The effectiveness of gas velocity Ug , liquid velocity UL, liquid viscosity μL, and particle density ρs on bed porosity BP and solid holdups εg were determined. The bed porosity increases with "increasing gas velocity", "liquid velocity", and "liquid viscosity". Solid holdup decreases with increasing gas, liquid

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Water Quality Status of Tigris River Using Index Analysis
...Show More Authors
Abstract<p>This study investigates the effects of Al-Doura oil refinery effluent, in Baghdad city, on the water quality of the Tigris River using the Canadian Water Quality Index (CCME WQI) and Rivers Maintaining System (1967). Water samples were collected monthly from Tigris River at three stations, which are Al-Muthanna Bridge (upstream), Al-Doura Refinery (point source), and Al–Zafaraniya city (downstream) from October 2020 to April 2021. Fourteen water quality parameters were studied, namely pH (6.50-8.10), Water Temperature (WT) (5.00-27.00 °C), Electrical Conductivity (EC) (877.00-1192.00 μs/cm), Dissolved Oxygen (DO) (5.03-7.57 mg/L), Biological Oxygen demand (BOD) (0.53-2.23 mg/L), Total Dissolved S</p> ... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Thu May 26 2011
Journal Name
Bulletin Of Environmental Contamination And Toxicology
Chlorophenols in Tigris River and Drinking Water of Baghdad, Iraq
...Show More Authors

study was conducted on a stretch of Tigris river crossing Baghdad city to determine the concentration of some chlorophenols pollutants. Aqueous samples were preliminary enriched about 500 times and the chlorophenols have determined using high performance liquid chromatography HPLC. Limits of detection LOD were (0.007–0.012 mg L-1), relative standard deviations RSD% were 2.4%–5.59% and relative recoveries were 51.06%– 104.07%. The existence of chlorophenols in Tigris river was in the range 0.023–4.596 mg L-1. The developed method suggested in this study can be applied for routine analysis and monitoring of chlorinated phenols in environmental aqueous samples.

View Publication
Scopus (18)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)
Detection System of Varicose Disease using Probabilistic Neural Network
...Show More Authors

Publication Date
Tue Oct 30 2018
Journal Name
Https://www.researchgate.net/journal/civil-engineering-journal-2476-3055
Developing Water Quality Index to Assess the Quality of the Drinking Water
...Show More Authors

In the present study, an attempt has been to develop a new water quality index (WQI) method that depends on the Iraqi specifications for drinking water (IQS 417, 2009)  to assess the validity of the Euphrates River for drinking by classifying the quality of the river water at different stations along its entire reach inside the Iraqi lands. The proposed classifications by this method are: Excellent, Good, Acceptable, Poor, and Very poor. Eight water quality parameters have been selected to represent the quality of the river water these are: Ion Hydrogen Concentration (pH), Calcium (Ca), Magnesium (Mg), Sodium (Na), Chloride (Cl), Sulphate (SO_4), Nitrate (NO_3), and Total Dissolved Solids (TDS). The variation of the water quality p

... Show More
Crossref (20)
Crossref
Publication Date
Fri Jun 01 2018
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Performance assessment of biological treatment of sequencing batch reactor using artificial neural network technique.
...Show More Authors

Artificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa

... Show More
Publication Date
Mon Nov 11 2019
Journal Name
Journal Of Global Pharma Technology
Using the Water Quality Index as a Powerful Tool to Assess the Water Quality for Drinking Purposes in Al-Salam, Western Region of Baghdad City, Iraq
...Show More Authors

Background: Tap waters play an important role in fulfilling the people needs for drinking and domestic purposes. Contaminate the tap water with different pollutants has become an issue of great concern for 90% of people who are depended on the tap water as the main source of drinking. Pollutants can make their way easily into the delivering pipes which suffer from the leaking resulting in decreasing the quality of water. Objective: Therefore, assess the water quality for drinking purpose by calculating the water quality index is an important tool to ascertain whether the water is suitable for human consumption or not. Methods: In the present work, the water quality of the Al-Salam, western region of Baghdad city, Iraq was investigated for 7

... Show More
View Publication
Scopus (5)
Scopus
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Crescent Moon Visibility: A New Criterion using Deep learned Artificial Neural-Network
...Show More Authors

     Many authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai

... Show More
Preview PDF
Scopus Crossref