Adversity and psychosocial stress are involved in aging through the following pathways. psychological stress enhances the nerve system to secrete endocrine mediators (hormones). Mitochondrial respiration mediates energy production stimulated by binding to these hormones to their receptors. Energy produced by mitochondria accelerates metabolism and, in its turn, leads to increases in reactive oxygen species (ROS) of free radicals. Cellular stress and accumulation of damage can result from an excess of ROS. Accumulation of damage comprises damages in telomeric and nontelomeric DNA, in addition to mitochondrial DNA. Mitochondrial DNA damage plays an important role in increasing the pathway of p53/p21. The expression of the PGC-1α gene is inhibited by activation of the previous pathway that generates a decrease in mitochondrial biogenesis. The low level of mitochondrial biogenesis generates mitophagy defects and increases the level of dysfunctional mitochondria that lead to a high level of ROS production. Nuclear DNA damage and mitochondrial dysfunction stimulate necrosis or cell senescence. Necrotic cells enhance the inflammatory activity by which damage-associated molecular patterns (DAMPs) are continuously secreted. Senescent cells secrete high levels of the senescence-associated secretory phenotype (SASP) that includes tumor necrosis factor TNF-α and interleukin-6 (IL-6) as inflammatory cytokines, and MCP-2 and interleukin-8 (IL-8) as chemokines. All these processes work together to accelerate the biological aging process by causing defects related to aging such as diabetes and cardiovascular disease.
Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po
... Show MoreThe investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
H
Superconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.
The aim of this study is to understand the effect of addition carbon types on aluminum electrical conductivity which used three fillers of carbon reinforced aluminum at different weight fractions. The experimental results showed that electrical conductivity of aluminum was decreased by the addition all carbon types, also at low weight fraction of carbon black; it reached (4.53S/cm), whereas it was appeared highly increasing for each carbon fiber and synthetic graphite. At (45%) weight fraction the electrical conductivity was decreased to (4.36Scm) and (4.27Scm) for each carbon fiber and synthetic graphite, respectively. While it was reached to maximum value with carbon black. Hybrid composites were investigated also; the results exhibit tha
... Show MoreDue to economic reasons or need for environmental conservatism or also preserve the natural resources; there has been an increasing shift towards the use of reclaimed asphalt pavement (RAP) materials in the pavement construction industry. Therefore, use the Reclaimed Asphalt Pavement (RAP) has been enormously increased in pavement construction and has been become common practice in many countries. Nevertheless, this is a relatively new concept in Iraq, and has to be remarked that is not used RAP in the production of HMA and this valuable material is mostly degraded. For this purpose, the reclaimed materials were collected from deteriorated pavement segments. The components of asphalt mixtures consist of: two asphalt penetration grades (40-5
... Show MoreThis study exposed to use the liquid whey (which was produced from of soft cheese processed) partially or completely instead of milk in fatty cake, this whey residue is still not used, instead it is thrown in rivers which effect different environment and economic problems. Different concentrations was used (25% , 50% , 75% , and 100%) of whey in baked cake , Volume , height and other different properties ( panel taste ) was studied too . Sensory evaluation results showed that an improved in all the character of the baked cake was happen by the used of 25% and 50% of the whey in comparison with the control treatment, the 75% replacement showed a decrease in appearance , texture and tenderness , while the degrees of color and fla
... Show More