The research summarizes the knowledge of the dimensions and denotations of T.V advertisement; and its constituents for building it through the semiotic approach of an ad sample represented by the announcement of Zain Kuwait Telecom Company which carries the title "Mr. President" using Roland Barth's approach, starting with the designation, implicit, and linguistic reading to reach the narrative features and their denotations. That makes television advertising as a semiotic and pragmatic discourse in view of the still and motion picture with its efficiency and strength to inform and communicate. And what lies in it of aesthetic, artistic elements; informational and effective power in influencing the recipients by focusing on narratives and anecdotes; narrative structure; and TV advertising with an attempt to present an applied model.
A simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
Objective: To identification environmental and psychological violence's components among collegians’ students of different stages, and gender throughout creating specific questionnaire, and estimating regression of environmental domain effect on psychological domain, as well as measuring powerful of the association contingency between violence's domains in admixed form with respondent characteristics, such that (Demographics, Economics, and Behaviors), and extracting model of estimates impact of studied domains in studying risks, and protective factors among collegians’ students in Baghdad city. Methodolog
ST Alawi, NA Mustafa, Al-Mustansiriyah Journal of Science, 2013
The present study deals with the effect of self -observation on EFL University students` achievement in conversation classes. The process of self-observation helps the teacher to understand one’s own actions and the reactions in the process of teaching. The sample of this study is EFL students in the third stage at the Department of English Language, morning studies, College of Education /Ibn-Rushd .The sample of the study consists of (84) students distributed on experimental group(A) includes (42) students, and (42) students as control group(B). In order to achieve the aim of the study ,and to gain a closer idea about the impact of reflective teaching technique(self-observation) on the students achievement in conversation classes, a chec
... Show MoreThis research is based on the descriptive and analytical methodology. The importance of studying labor laws and labor unions in Japan between 1889 and 1946 constitutions is because Japan was out of a feudal phase, and had no idea about the factory system and industrialization in their modern sense before the Meiji era. Generally, its labor system used to be mostly familial, and the economic system was based on agriculture. This called for the enactment of legislations and laws appropriate for the coming phase in Meiji era. Thus, this paper examines the role of Meiji government in enacting labor legislations and laws when he came to power in 1896, and his new constitution in 1889 and the civil code of 1896. It further examines the way Mei
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show More