In recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve network congestion problems. Since AI technologies are able to extract relevant features from data and deal with huge amounts of data, the integration of communication networks with AI to solve the congestion problem appears promising, and the research requires exploration. This paper provides a review of how AI technologies can be used to solve the congestion problem in 4G and 5G networks. We examined previous studies addressing the problem of congestion in networks, such as congestion prediction, congestion control, congestion avoidance, and TCP development for congestion control. Finally, we discuss the future vision of using AI technologies in 4G and 5G networks to solve congestion problems and identify research issues that need further study.
The essay discusses how different environmental factors affect plant growth by explaining how each factor affects the physiological processes within the plant. The essay begins by explaining the effect of temperature on plant growth, as high or low temperatures can significantly affect the rate of photosynthesis and lead to a reduction in water and nutrient absorption. It also discusses the light intensity impacting plants because the more appropriate the light intensity is, the more enhanced the plant's photosynthesis ability, and in the excess or insufficient light condition, the growth can be inhibited. Additionally, the article outlines the effect of water shortage on the plant because this leads to the closure of stomata to avoid water
... Show MoreAeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution) as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge) was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with
... Show MoreThe present study investigates the characterization of silver nanoparticles (AgNPs) synthesized using Fusarium solani and their impact on tomato seed germination, plant growth, and disease resistance. A visible color change from yellow to dark smoky indicated the formation of AgNPs, while UV-visible spectrophotometry revealed an absorbance peak at 437 nm, confirming their presence. Atomic force microscopy analysis showed that the AgNPs ranged from 0 to 39.27 nm in size, with an average height of 5.772 nm, while scanning electron microscopy highlighted their diverse surface morphology. The application of AgNPs and mycorrhizal fungi significantly improved tomato seed germination rates, plant height, and dry weight compared to untreate
... Show MoreConcentrated research topic in the study of key variables in the work of the inspectors general offices , which are in the application of quality management standards audit work and reduce the incidence of corruption. It highlights the importance of current research in being a serious attempt aimed at highlighting the role of the importance of standards of quality management audit work , because they represent a router and leader of the accountant or ( Sergeant ) in the performance of his work and the extent of compliance with these standards , as well as highlight the role of quality audit in reducing the incidence of corruption , of during the professional performance of Higher auditors and determine the responsibilities entrus
... Show MoreIn the last few years, there have been a lot of changes in the economy, society, and the environment. This has led to much competition between companies, directly and indirectly affecting production and marketing processes. Most companies are trying to cut production and manufacturing costs by using modern cost techniques such as product life cycle costing and Continuous Improvement (Kaizen) technology, in the method of measuring production costs or service costs, and the need for internal control to keep an eye on how these technologies are being used and how well they work. And to find out the effect of internal control on the implementation of costing techniques in Iraqi companies, 64 questionnaires were given to people who work in the i
... Show MoreSpatial Intelligence is a mental ability to understand and solve real-world problems. These visual-spatial representations are fundamental in learning various "STEM" topics, like digital drawing, art presentations, creating graphical representations, 2D designs. Opportunity to interact with real and/or virtual objects. It is a good opportunity in applying new techniques such as the augmenter, which is able to clarify mathematical tables, concepts and generalizations greatly to the visualization, understanding and mastery of concepts mathematically. The purpose of the research is to investigate impact of using AR technology in developing spatial intelligence for secondary school students, Baghdad. The quasi-experimental design was us
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show More