The problems of modeling the signal and dispersion properties of a second order recursive section in the integer parameter space are considered. The formulation and solution of the section synthesis problem by selective and dispersive criteria using the methods of integer nonlinear mathematical programming are given. The availability of obtaining both positive and negative frequency dispersion of a signal in a recursive section, as well as the possibility of minimizing dispersion distortions in the system, is shown.
The consumption of fossil fuels has caused many challenges, including environmental and climate damage, global warming, and rising energy costs, which has prompted seeking to substitute other alternative sources. The current study explored the microwave pyrolysis of Albizia branches to assess its potential to produce all forms of fuel (solid, liquid, gas), time savings, and effective thermal heat transfer. The impact of the critical parameters on the quantity and quality of the biofuel generation, including time, power levels, biomass weight, and particle size, were investigated. The results revealed that the best bio-oil production was 76% at a power level of 450 W and 20 g of biomass. Additionally, low power levels led to enhanced
... Show MoreA cumulative review with a systematic approach aimed to provide a comparison of studies’ investigating the possible impact of the active form of vitamin D3, calcitriol (CTL), on the tooth movement caused by orthodontic forces (OTM) by evaluating the quality of evidence, based on collating current data from animal model studies, in vivo cell culture studies, and human clinical trials. Methods: A strict systematic review protocol was applied following the application of the International Prospective Register of Systematic Reviews (PROSPERO). A structured search strategy, including main keywords, was defined during detailed search with the application of electronic database systems: Medline/Pubmed, EMBASE, Scopus, Web of Science, and
... Show MoreSolar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct rep
In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C
... Show MoreSymmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a rand
... Show MoreDeveloping smart city planning requires integrating various techniques, including geospatial techniques, building information models (BIM), information and communication technology (ICT), and artificial intelligence, for instance, three-dimensional (3D) building models, in enabling smart city applications. This study aims to comprehensively analyze the role and significance of geospatial techniques in smart city planning and implementation. The literature review encompasses (74) studies from diverse databases, examining relevant solutions and prototypes related to smart city planning. The focus highlights the requirements and preparation of geospatial techniques to support the transition to a smart city. The paper explores various aspects,
... Show MoreIn order to promote sustainable steel-concrete composite structures, special shear connectors that can facilitate deconstruction are needed. A lockbolt demountable shear connector (LB-DSC), including a grout-filled steel tube embedded in the concrete slab and fastened to a geometrically compatible partial-thread bolt, which is bolted on the steel section's top flange of a composite beam, was proposed. The main drawback of previous similar demountable bolts is the sudden slip of the bolt inside its hole. This bolt has a locked conical seat lug that is secured inside a predrilled compatible counter-sunk hole in the steel section's flange to provide a non-slip bolt-flange connection. Deconstruction is achieved by demounting the tube from the t
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More