Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-2018. Results showed that the water quality of the Tigris River water is within the world health organization (WHO) specifications for drinking water except for Sulfate concentration. An artificial neural network (ANN) was used to develop the model for the three locations to predict SAR. The sum of the squared error function and the coefficient of determination (R2) were used to evaluate the amount of error in predicting values of SAR and performance evaluation of the model. The results showed that the highest value of the coefficient of determination was 0.992, 0.986, and 0.955 for Samarra, Baghdad, and Kut, respectively and the ANN analysis indicated that the prediction of SAR was effected by Sodium for three stations. Thus, the ANN model has been found to provide SAR prediction tool that can be used effectively to describe the suitability of river water quality for irrigation purposes.
Water is an essential aspect of life and important in evolution. Recently the potable water quality topic has received much attention. The study aims to determine drinking water quality in Al-Najaf City by collecting samples throughout Al-Najaf city and comparing the results with the Iraqi guidelines (IQS 417) and World Health Organization (WHO) guidelines, as well as to calculate the WQI. Samples were tested in the laboratory between December 2021 and June 2022. The results showed that multiple parameters exceeded the allowable limits during both testing periods; during winter months, the results of TDS and turbidity exceeded the upper limits in multiple locations. Total hardness values also
... Show MoreThe increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah
... Show MoreThe most significant water supply, which is the basis of agriculture, industry and human and wildlife needs, is the river. In order to determine its suitability for drinking purposes, this study aims to measure the Water Quality Index (WQI) of the Tigris River in the Salah Al-Din Province (center of Tikrit), north of Baghdad. For ten (9) physio-chemical parameters, namely turbidity, total suspended sediments, PH, electrical conductivity, total dissolved solids, alkalinity, chloride, nitrogen as nitrate, sulphate, and then transported for examination to the laboratory, water samples were collected from 13 locations along the Tigris river. Using the weighted arithmetic index method, the WQI was measured and found to be 105,87 in up-stream, wh
... Show MoreIn the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as a particles with low-density and diameter (5 mm) in a (9.2 cm) inner diameter with height (200 cm) of vertical perspex column. The effectiveness of gas velocity Ug , liquid velocity UL, liquid viscosity μL, and particle density ρs on bed porosity BP and solid holdups εg were determined. The bed porosity increases with "increasing gas velocity", "liquid velocity", and "liquid viscosity". Solid holdup decreases with increasing gas, liquid
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show More