Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-2018. Results showed that the water quality of the Tigris River water is within the world health organization (WHO) specifications for drinking water except for Sulfate concentration. An artificial neural network (ANN) was used to develop the model for the three locations to predict SAR. The sum of the squared error function and the coefficient of determination (R2) were used to evaluate the amount of error in predicting values of SAR and performance evaluation of the model. The results showed that the highest value of the coefficient of determination was 0.992, 0.986, and 0.955 for Samarra, Baghdad, and Kut, respectively and the ANN analysis indicated that the prediction of SAR was effected by Sodium for three stations. Thus, the ANN model has been found to provide SAR prediction tool that can be used effectively to describe the suitability of river water quality for irrigation purposes.
The present study conducted to study epipelic algae in the Tigris River within Baghdad city for one year from September 2011 to August 2012 due to the importance role of benthic algae in lotic ecosystems. Five sites have been chosen along the river. A total of 154 species of epipelic algae was recorded belongs to 45 genera, where Bacillariophyceae (Diatoms) was the dominant groups followed by Cyanophyceae and Chlorophyceae. The numbers of common types in three sites were 47 species. Bacillariophyceae accounted 88.31% of the total number of epipelic algae, followed by Cyanophyceae 7.14 % and Chlorophyceae 4.55%. A 85 species (29 genera) recorded in site 1, 103 species (34 genera) in site2, 112 species (35 genera) in site3, 96 species
... Show MoreThere is a scarcity of data regarding algal flora of Tigris River in the territory of Baghdad. The present study deals with Tigris River in Al-Dora site in Baghdad province from November 2014 to June 2015 in order to shed light on its epiphytic Algae on (Phragmites australis) and epipelic algae. An amount of 183 and 154 species of epiphytic and epipelic algae are identified respectfully. The Bacillariophyceae (diatoms) are the dominant algal group followed by Cyanophyceae and Chlorophyceae. Moreover, 90 species are shared between two groups of algae (epiphytic and epipelic) and identified at the study site. Additionally, the seasonal variations and diversity of algal species are noticed. The highest number of epiphytic algae is 772.05 x 104
... Show MoreSewage water is a mixture of water and solids added to water for various uses, so it needs to be treated to meet local or global standards for environmentally friendly waste production. The present study aimed to analyze the new Maaymyrh sewage treatment plant's quality parameters statistically at Hilla city. The plant is designed to serve 500,000 populations, and it is operating on a biological treatment method (Activated Sludge Process) with an average wastewater inflow of 107,000m3/day. Wastewater data were collected daily by the Mayoralty of Hilla from November 2019 to June 2020 from the influent and effluent in the (STP) new in Maaymyrh for five water quality standards, such as (BOD5), (COD), (TSS), (TP)
... Show MoreWater drainage pattern in the rivers and changed the nature of the renewed feeding areas
in the basin in terms of topographic and geological conditions and climate in addition to the
human role in organizing the process flow within these basins. This study addressed the
development of the Tigris River Hydrological in the city of Baghdad and found that the
annual rate of water drainage in the Tigris River was driven down very significantly,
especially in the past twenty years, and since 1996 up to 2014 record flow rates of less than
the overall rate of discharge of water, a (950 m3 / s ), in addition to the quarterly decrease the
discharge rates, especially since the beginning of the year 2000 and took converge all fo
With the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases
... Show MoreThis study aims to find the effect of water-cement ratio on the compressive strength of concrete by using ultrasonic pulse velocity test (UPVT). Over 230 standard cube specimens were used in this study, with dimensions of 150mm, and concrete cubes were cured in water at 20 °C. Also, the specimens used in the study were made of concrete with varied water-cement ratio contents from 0.48 to 0.59. The specimens were taken from Diyarbakir-Turkey concrete centers and tested at the structure and material science lab, civil engineering, faculty of engineering from Dicle University. The UPV measurement and compressive strength tests were carried out at the concrete age of 28 days. Their UPV and compressive strength ranged
... Show MoreArtificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreEffluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 6
... Show MoreThe map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme
... Show More