Glassy carbon electrode (GCE) was modified with carbon nanotubes CNT and C60 by attachment and solution evaporation techniques, respectively. CNT/Li+/GCE and C60/Li+/GCE were prepared by modifying CNT/GCE and C60/GCE in Li+ solution via cyclic voltammetry (CV) potential cycling. The sensing characteristics of the modified film electrodes, demonstrated in this study for interference of Mn2+ in different heavy metals ion esp. Hg2+, Cd2+ and Cu2+. The interfering effect was investigated that exert positive interference on the redox peaks of Mn2+. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe the effect of interference for Mn2+ in 1:1 ratio with different heavy metals ion.
Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction informati
... Show MoreCopper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.
CIGS nanoink has synthesized from molecular precursors of CuCl, InCl3, GaCl3 and Se metal heat up 240 °C for a half hour in N2-atmosphere to form CIGS nanoink, and then deposited onto substrates of soda-lime glass (SLG). This work focused on CIGS nanocrystals, indicates their synthesis and applications in photovoltaic devices (PVs) as an active light absorber layers. in this work, using spin-coating to deposit CIGS layers (75 mg/ml and 500 nm thickness), without selenization at high temperatures, were obtained up to 1.398 % power conversion efficiency (PCE) at AM 1.5 solar illumination. Structural formations of CIGS chalcopyrite structure were studied by using x ray diffraction XRD. The morphology and composition of CIGS were studied using
... Show MoreIn the present work, a D.C. magnetron sputtering system was
designed and fabricated. This chamber of this system includes two
coaxial cylinders made from copper .the inner one used as a cathode
while the outer one used as a node. The magnetic coils located on
the outer cylinder (anode) .The profile of magnetic field for various
coil current (from 2Amp to 14Amp) are shown. The effect of
different magnetic field on the Cu thin films thickness at constant
pressure of 7x10-5mbar is investigated. The result shown that, the
electrical behavior of the discharge strongly depends on the values
of the magnetic field and shows an optimum value at which the
power absorbed by the plasma is maximum. Furthermore, the
pl
Background: Fixed orthodontic appliances impede the maintenance of oral hygiene and result in plaque accumulation leads to enamel demineralization caused by acids produced by bacteria. Studies on plaque control strategies in orthodontic populations are limited. This might be caused by difficulties in the quantitative evaluation of dental plaque because the teeth have various levels of bracket coverage, and different tooth sizes and malocclusions, making the traditional categorical indices complex. The present study aims to evaluate the effect of different hygiene protocols on plaque quantity on bands with different attachments. Materials and method: Twenty patients had four bands within the orthodontic appliance. Then randomly divided into
... Show MoreBackground: The finite element method (FEM) is expected to be one of the most effective computational tools for measuring the stress on implant-supported restorations. This study was designed using the 3D-FEM to evaluate the effect of two adhesive luting types of cement on the occlusal stress and deformation of a hybrid crown cemented to a mono-implant. Materials and Method: The mono-screw STL file was imported into the CAD/CAM system library from a database supported by De-Tech Implant Technology. This was to assist in the accurate reproduction of details and design of a simulated implant abutment. Virtually, a digital crown was designed to be cemented on an abutment screw. A minimum occlusal thickness of 1mm and marginal fitting of 1.2
... Show MoreAn electrocoagulation process has been used to eliminate the chemical oxygen demand (COD) from wastewaters discharged from the Al-Muthanna petroleum refinery plant. In this process, a circular aluminum bar was used as a sacrificial anode, and hallow cylinder made from stainless steel was used as a cathode in a tubular batch electrochemical Reactor. Impacts of the operating factors like current density (5-25mAcm-2), NaCl addition at concentrations (0-2g/l), and pH at values (3-11) on the COD removal efficiency were studied.
Results revealed that the increase in current density increases the COD removal efficiency, whereas an increase
In this work, prepared new ligand namely 5-(2,4-dichloro-phenyl)-1,3,4-oxadiazole-2-(3H)-thion, was obtained from the 2,4-dichlorobenzoyl chloride with hydrazine, after that reaxtion with CS2/KOH in methanol.
SYNTHESIS AND CHARACTERISATION OF NEWCo(II), Zn(II) AND Cd(II) COMPLEXES DERIVED FROM OXADIAZOLE LIGAND AND 1,10-PHENANTHROLINE AS Co-LIGAND