<span>Digital audio is required to transmit large sizes of audio information through the most common communication systems; in turn this leads to more challenges in both storage and archieving. In this paper, an efficient audio compressive scheme is proposed, it depends on combined transform coding scheme; it is consist of i) bi-orthogonal (tab 9/7) wavelet transform to decompose the audio signal into low & multi high sub-bands, ii) then the produced sub-bands passed through DCT to de-correlate the signal, iii) the product of the combined transform stage is passed through progressive hierarchical quantization, then traditional run-length encoding (RLE), iv) and finally LZW coding to generate the output mate bitstream. The measures Peak signal-to-noise ratio (PSNR) and compression ratio (CR) were used to conduct a comparative analysis for the performance of the whole system. Many audio test samples were utilized to test the performance behavior; the used samples have various sizes and vary in features. The simulation results appear the efficiency of these combined transforms when using LZW within the domain of data compression. The compression results are encouraging and show a remarkable reduction in audio file size with good fidelity.</span>
Images hold important information, especially in military and commercial surveillance as well as in industrial inspection and communication. Therefore, the protection of the image from abuse, unauthorized access, and damage became a significant demand. This paper introduces a new Beta chaotic map for encrypting and confusing the color image with Deoxyribonucleic Acid (DNA) sequence. First, the DNA addition operation is used for diffusing each component of the plain image. Then, a new Beta chaotic map is used for shuffling the DNA color image. In addition, two chaotic maps, namely the proposed new Beta and Sine chaotic maps, are used for key generation. Finally, the DNA XOR operation is applied between the generated key and shuffled DNA i
... Show MoreThe sending of information at the present time requires the speed and providing protection for it. So compression of the data is used in order to provide speed and encryption is used in order to provide protection. In this paper a proposed method is presented in order to provide compression and security for the secret information before sending it. The proposed method based on especial keys with MTF transform method to provide compression and based on RNA coding with MTF encoding method to provide security. The proposed method based on multi secret keys. Every key is designed in an especial way. The main reason in designing these keys in special way is to protect these keys from the predication of the unauthorized users.
The approach given in this paper leads to numerical methods to find the approximate solution of volterra integro –diff. equ.1st kind. First, we reduce it from integro VIDEs to integral VIEs of the 2nd kind by using the reducing theory, then we use two types of Non-polynomial spline function (linear, and quadratic). Finally, programs for each method are written in MATLAB language and a comparison between these two types of Non-polynomial spline function is made depending on the least square errors and running time. Some test examples and the exact solution are also given.
In this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f
... Show MoreIn the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreIn this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
Root research requires high throughput phenotyping methods that provide meaningful information on root depth if the full potential of the genomic revolution is to be translated into strategies that maximise the capture of water deep in soils by crops. A very simple, low cost method of assessing root depth of seedlings using a layer of herbicide (