This research studies the influence of water source on the compressive strength of high strength concrete. Four types of water source were adopted in both mixing and curing process these are river, tap, well and drainage water (all from Iraq-Diyala governorate). Chemical analysis was carried out for all types of the used water including (pH, total dissolved solids (TDS), Turbidity, chloride, total suspended solid (TSS), and sulfates). Depending on the chemical analysis results, it was found that for all adopted sources the chemical compositions was within the ASTM C 1602/C 1602M-04 limits and can be satisfactorily used in concrete mixtures. Mixture of high strength concrete for compressive strength of (60 MPa) was designed and checked using water-to-cement ratio of 0.37, 400.5 kg cement with 10% replacement of SF (Silica Fume), 607 kg sand, 1147 kg gravel and 0.85 lit /100 kg of cement of SP (Supper Plasticizer). Five ages were adopted to measure the compressive strength these are (7, 14, 28, 60, 90 and 120) days. The results indicated that the strength of concrete at different ages was affected by the adopted water source especially on the period (28-90) days. There was a reduction on the compressive strength varies between ( - 3 5.8) % and (3-1.5) % for both river and well water source which is belong to the effect of chlorides.
In this paper, numerical and experimental studies on the elastic behavior of glass fiber reinforced polymer (GFRP) with stiffeners in the GFRP section's web (to prevent local buckling) are presented. The GFRP profiles were connected to the concrete deck slab by shear connectors. Two full-scale simply supported composite beams (with and without stiffeners) were tested under impact load (three-point load) to assess its structural response. The results proved that the maximum impact force, maximum deflection, damping time, and damping ratio of the composite beam were affected by the GFRP stiffeners. The experimental results indicated that the damping ratio and deflection were diminished compare
... Show MoreThis study investigates the possibility of using waste plastic as one of the components of expired lead-acid batteries to produce lightweight concrete. Different percentages of lead-acid battery plastic were used in the production of lightweight concrete. The replacements were (70, 80 and 100%) by volume of the fine and coarse aggregate. Results demonstrated that a reduction of approximately 23.6% to 35% in the wet density was observed when replacement of 70% to 100% of the natural aggregate by lead-acid battery plastic. Also, the compressive strength decreased slightly with the increase in plastic content at different curing ages of 7, 28, 60, 90, 120 days. The lowest value of compressive strength was (20.7 MPa) for (wa
... Show MoreIn the present study, an attempt has been to develop a new water quality index (WQI) method that depends on the Iraqi specifications for drinking water (IQS 417, 2009) to assess the validity of the Euphrates River for drinking by classifying the quality of the river water at different stations along its entire reach inside the Iraqi lands. The proposed classifications by this method are: Excellent, Good, Acceptable, Poor, and Very poor. Eight water quality parameters have been selected to represent the quality of the river water these are: Ion Hydrogen Concentration (pH), Calcium (Ca), Magnesium (Mg), Sodium (Na), Chloride (Cl), Sulphate (SO_4), Nitrate (NO_3), and Total Dissolved Solids (TDS). The variation of the water quality parameters
... Show MoreIn this paper, ceramic water filters were produced by using ten mixtures of different ratios of red clay and sawdust under different production conditions. The physical properties of these filters were tested. The production conditions include five press pressures ranged from 10 to 50MPa and a firing schedule having three different final temperatures of 1000, 1070, and 1100˚C. The tests results of the physical properties were used to obtain best compatibility between the hydraulic and the mechanical properties of these filters. Results showed that as the press pressure and the firing temperature are increased, the bulk density and the compressive and bending strengths of the produced filters are increased, while, the porosity and absorp
... Show MoreObjective(s): To determine the effect of obesity and socioeconomic status upon adolescents' high school students' intelligence quotient in Baghdad City. Methodology: A descriptive design is carried throughout the study to determine the effect of obesity and socioeconomic status on adolescents' high schools students' intelligence quotient in Baghdad City for the period of January 7th 2017 to May 29th 2017. A non-probability, purposive sample, of (120) high school students, is selected. The sample is comprised of (12) students from 7th grade, (26) students from 8 th grade, (14) students from 9th grade, (3
ENGLISH
In recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have concentrated on improving the properties of concrete and studying the factors that influence on these properties. Since the compressive strength is considered a valuable property and is invariably a vital element of the structural design, especially high early strength development which can be provide more benefits in concrete production, such as reducing construction time and labor and saving the formwork and energy. As a matter of fact, it is influenced as a most properties of concrete by several factors including water-cement ratio, cement type and curing methods employed.
Because of acce
Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys
... Show More